Ontology type: schema:Chapter
2013
AUTHORSZhi-Zhong Chen , Ying Fan , Lusheng Wang
ABSTRACTWe first present a fixed-parameter algorithm for the NP-hard problem of deciding if there are two matchings M1 and M2 in a given graph G such that |M1| + |M2| is no less than a given number k. The algorithm runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(m + k\cdot k!\cdot \left(2\sqrt{2}\right)^k\cdot n^2\log n \ \right)$\end{document} time, where n (respectively, m) is the number of vertices (respectively, edges) in G. We then present a combinatorial approximation algorithm for the NP-hard problem of finding two disjoint matchings in a given edge-weighted graph G so that their total weight is maximized. The algorithm achieves an approximation ratio of roughly 0.76 and runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(m + n^3\alpha(n)\right)$\end{document} time, where α is the inverse Ackermann function. More... »
PAGES1-12
Combinatorial Optimization and Applications
ISBN
978-3-319-03779-0
978-3-319-03780-6
http://scigraph.springernature.com/pub.10.1007/978-3-319-03780-6_1
DOIhttp://dx.doi.org/10.1007/978-3-319-03780-6_1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040219405
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Computation Theory and Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan",
"id": "http://www.grid.ac/institutes/grid.412773.4",
"name": [
"Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan"
],
"type": "Organization"
},
"familyName": "Chen",
"givenName": "Zhi-Zhong",
"id": "sg:person.015654265661.98",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong",
"id": "http://www.grid.ac/institutes/grid.35030.35",
"name": [
"Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong"
],
"type": "Organization"
},
"familyName": "Fan",
"givenName": "Ying",
"id": "sg:person.016605774033.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016605774033.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong",
"id": "http://www.grid.ac/institutes/grid.35030.35",
"name": [
"Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong"
],
"type": "Organization"
},
"familyName": "Wang",
"givenName": "Lusheng",
"id": "sg:person.01105113721.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52"
],
"type": "Person"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "We first present a fixed-parameter algorithm for the NP-hard problem of deciding if there are two matchings M1 and M2 in a given graph G such that |M1|\u2009+\u2009|M2| is no less than a given number k. The algorithm runs in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$O\\left(m + k\\cdot k!\\cdot \\left(2\\sqrt{2}\\right)^k\\cdot n^2\\log n \\ \\right)$\\end{document} time, where n (respectively, m) is the number of vertices (respectively, edges) in G. We then present a combinatorial approximation algorithm for the NP-hard problem of finding two disjoint matchings in a given edge-weighted graph G so that their total weight is maximized. The algorithm achieves an approximation ratio of roughly 0.76 and runs in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$O\\left(m + n^3\\alpha(n)\\right)$\\end{document} time, where \u03b1 is the inverse Ackermann function.",
"editor": [
{
"familyName": "Widmayer",
"givenName": "Peter",
"type": "Person"
},
{
"familyName": "Xu",
"givenName": "Yinfeng",
"type": "Person"
},
{
"familyName": "Zhu",
"givenName": "Binhai",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-03780-6_1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-03779-0",
"978-3-319-03780-6"
],
"name": "Combinatorial Optimization and Applications",
"type": "Book"
},
"keywords": [
"NP-hard problem",
"disjoint matchings",
"approximation algorithm",
"graph G",
"combinatorial approximation algorithm",
"edge-weighted graph G",
"number of vertices",
"inverse Ackermann function",
"fixed-parameter algorithm",
"approximation ratio",
"Ackermann function",
"algorithm",
"problem",
"vertices",
"matching",
"number",
"total weight",
"function",
"time",
"ratio",
"weight",
"M1",
"m2"
],
"name": "Parameterized and Approximation Algorithms for Finding Two Disjoint Matchings",
"pagination": "1-12",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040219405"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-03780-6_1"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-03780-6_1",
"https://app.dimensions.ai/details/publication/pub.1040219405"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:41",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_193.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-03780-6_1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03780-6_1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03780-6_1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03780-6_1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03780-6_1'
This table displays all metadata directly associated to this object as RDF triples.
110 TRIPLES
23 PREDICATES
49 URIs
42 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-03780-6_1 | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0802 |
3 | ″ | schema:author | N069880780a3a4a0eab0aa4027c164fa2 |
4 | ″ | schema:datePublished | 2013 |
5 | ″ | schema:datePublishedReg | 2013-01-01 |
6 | ″ | schema:description | We first present a fixed-parameter algorithm for the NP-hard problem of deciding if there are two matchings M1 and M2 in a given graph G such that |M1| + |M2| is no less than a given number k. The algorithm runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(m + k\cdot k!\cdot \left(2\sqrt{2}\right)^k\cdot n^2\log n \ \right)$\end{document} time, where n (respectively, m) is the number of vertices (respectively, edges) in G. We then present a combinatorial approximation algorithm for the NP-hard problem of finding two disjoint matchings in a given edge-weighted graph G so that their total weight is maximized. The algorithm achieves an approximation ratio of roughly 0.76 and runs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$O\left(m + n^3\alpha(n)\right)$\end{document} time, where α is the inverse Ackermann function. |
7 | ″ | schema:editor | N37eece87da9e4c1b97b43fca81cd5074 |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N79b6dde07b5047fab3ccbe1f71e7345a |
12 | ″ | schema:keywords | Ackermann function |
13 | ″ | ″ | M1 |
14 | ″ | ″ | NP-hard problem |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | approximation algorithm |
17 | ″ | ″ | approximation ratio |
18 | ″ | ″ | combinatorial approximation algorithm |
19 | ″ | ″ | disjoint matchings |
20 | ″ | ″ | edge-weighted graph G |
21 | ″ | ″ | fixed-parameter algorithm |
22 | ″ | ″ | function |
23 | ″ | ″ | graph G |
24 | ″ | ″ | inverse Ackermann function |
25 | ″ | ″ | m2 |
26 | ″ | ″ | matching |
27 | ″ | ″ | number |
28 | ″ | ″ | number of vertices |
29 | ″ | ″ | problem |
30 | ″ | ″ | ratio |
31 | ″ | ″ | time |
32 | ″ | ″ | total weight |
33 | ″ | ″ | vertices |
34 | ″ | ″ | weight |
35 | ″ | schema:name | Parameterized and Approximation Algorithms for Finding Two Disjoint Matchings |
36 | ″ | schema:pagination | 1-12 |
37 | ″ | schema:productId | N19ecfe3369ea4bcb91725fcaa0dc6296 |
38 | ″ | ″ | Nda4cdf0952104973bc1217a6bc012409 |
39 | ″ | schema:publisher | Nff1696bf1f824647bc1c985cbce5e5d6 |
40 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040219405 |
41 | ″ | ″ | https://doi.org/10.1007/978-3-319-03780-6_1 |
42 | ″ | schema:sdDatePublished | 2022-05-10T10:41 |
43 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
44 | ″ | schema:sdPublisher | Nf2d258ed793347deb46bc2d524be8104 |
45 | ″ | schema:url | https://doi.org/10.1007/978-3-319-03780-6_1 |
46 | ″ | sgo:license | sg:explorer/license/ |
47 | ″ | sgo:sdDataset | chapters |
48 | ″ | rdf:type | schema:Chapter |
49 | N069880780a3a4a0eab0aa4027c164fa2 | rdf:first | sg:person.015654265661.98 |
50 | ″ | rdf:rest | N954ff32199884572b913337591cee853 |
51 | N0e50fbbba3ae4eafb8ccf350eefa8336 | rdf:first | sg:person.01105113721.52 |
52 | ″ | rdf:rest | rdf:nil |
53 | N10aaf1f8985b4b23b1a02d4fe9eaf10a | schema:familyName | Widmayer |
54 | ″ | schema:givenName | Peter |
55 | ″ | rdf:type | schema:Person |
56 | N1229bca39f504bc29505cc68b640e7dc | rdf:first | N30e2a66ce5d244baba32ed4aedcbd539 |
57 | ″ | rdf:rest | rdf:nil |
58 | N19ecfe3369ea4bcb91725fcaa0dc6296 | schema:name | dimensions_id |
59 | ″ | schema:value | pub.1040219405 |
60 | ″ | rdf:type | schema:PropertyValue |
61 | N30e2a66ce5d244baba32ed4aedcbd539 | schema:familyName | Zhu |
62 | ″ | schema:givenName | Binhai |
63 | ″ | rdf:type | schema:Person |
64 | N37eece87da9e4c1b97b43fca81cd5074 | rdf:first | N10aaf1f8985b4b23b1a02d4fe9eaf10a |
65 | ″ | rdf:rest | N3ced72d588494f1cad9c14d21db8efa5 |
66 | N3ced72d588494f1cad9c14d21db8efa5 | rdf:first | N439b80bc08f04422a8066b37fe55e508 |
67 | ″ | rdf:rest | N1229bca39f504bc29505cc68b640e7dc |
68 | N439b80bc08f04422a8066b37fe55e508 | schema:familyName | Xu |
69 | ″ | schema:givenName | Yinfeng |
70 | ″ | rdf:type | schema:Person |
71 | N79b6dde07b5047fab3ccbe1f71e7345a | schema:isbn | 978-3-319-03779-0 |
72 | ″ | ″ | 978-3-319-03780-6 |
73 | ″ | schema:name | Combinatorial Optimization and Applications |
74 | ″ | rdf:type | schema:Book |
75 | N954ff32199884572b913337591cee853 | rdf:first | sg:person.016605774033.37 |
76 | ″ | rdf:rest | N0e50fbbba3ae4eafb8ccf350eefa8336 |
77 | Nda4cdf0952104973bc1217a6bc012409 | schema:name | doi |
78 | ″ | schema:value | 10.1007/978-3-319-03780-6_1 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | Nf2d258ed793347deb46bc2d524be8104 | schema:name | Springer Nature - SN SciGraph project |
81 | ″ | rdf:type | schema:Organization |
82 | Nff1696bf1f824647bc1c985cbce5e5d6 | schema:name | Springer Nature |
83 | ″ | rdf:type | schema:Organisation |
84 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
85 | ″ | schema:name | Information and Computing Sciences |
86 | ″ | rdf:type | schema:DefinedTerm |
87 | anzsrc-for:0802 | schema:inDefinedTermSet | anzsrc-for: |
88 | ″ | schema:name | Computation Theory and Mathematics |
89 | ″ | rdf:type | schema:DefinedTerm |
90 | sg:person.01105113721.52 | schema:affiliation | grid-institutes:grid.35030.35 |
91 | ″ | schema:familyName | Wang |
92 | ″ | schema:givenName | Lusheng |
93 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105113721.52 |
94 | ″ | rdf:type | schema:Person |
95 | sg:person.015654265661.98 | schema:affiliation | grid-institutes:grid.412773.4 |
96 | ″ | schema:familyName | Chen |
97 | ″ | schema:givenName | Zhi-Zhong |
98 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015654265661.98 |
99 | ″ | rdf:type | schema:Person |
100 | sg:person.016605774033.37 | schema:affiliation | grid-institutes:grid.35030.35 |
101 | ″ | schema:familyName | Fan |
102 | ″ | schema:givenName | Ying |
103 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016605774033.37 |
104 | ″ | rdf:type | schema:Person |
105 | grid-institutes:grid.35030.35 | schema:alternateName | Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong |
106 | ″ | schema:name | Department of Computer Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong |
107 | ″ | rdf:type | schema:Organization |
108 | grid-institutes:grid.412773.4 | schema:alternateName | Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan |
109 | ″ | schema:name | Division of Information System Design, Tokyo Denki University, 350-0394, Hatoyama, Saitama, Japan |
110 | ″ | rdf:type | schema:Organization |