Protein Function Prediction Using Adaptive Swarm Based Algorithm View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Archana Chowdhury , Amit Konar , Pratyusha Rakshit , Ramadoss Janarthanan

ABSTRACT

The center of attention of the research in bioinformatics has been towards understanding the biological mechanisms and protein functions. Recently high throughput experimental methods have provided many protein-protein interaction networks which need to be analyzed to provide an insight into the functional role of proteins in living organism. One of the important problems of post-genomic era is to predict the functions of unannotated proteins. In this paper we propose a novel approach for protein function prediction by utilizing the fact that most of the proteins which are connected in protein-protein interaction network, tend to have similar functions. The method randomly associates unannotated protein with functions from the possible set of functions. Our approach, Artificial Bee Colony with Temporal Difference Q-Learning (ABC-TDQL), then optimizes the score function which incorporates the extent of similarity between the set of functions of unannotated protein and annotated protein, to associate a function to an unannotated protein. The approach was utilized to predict protein function of Saccharomyces Cerevisiae and the experimental results reveal that our proposed method outperforms other algorithms in terms of precession, recall and F-value. More... »

PAGES

55-68

Book

TITLE

Swarm, Evolutionary, and Memetic Computing

ISBN

978-3-319-03755-4
978-3-319-03756-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_6

DOI

http://dx.doi.org/10.1007/978-3-319-03756-1_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004363319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "ETCE Department, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chowdhury", 
        "givenName": "Archana", 
        "id": "sg:person.013010050277.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013010050277.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "ETCE Department, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "ETCE Department, Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rakshit", 
        "givenName": "Pratyusha", 
        "id": "sg:person.013677575421.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677575421.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSE Department, TJS College of Engineering, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janarthanan", 
        "givenName": "Ramadoss", 
        "id": "sg:person.013316247664.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1074/mcp.m100037-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000521469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007734343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008565589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011675958", 
          "https://doi.org/10.1038/ng906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011675958", 
          "https://doi.org/10.1038/ng906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/yea.706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011830580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5428.751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013411081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0030042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022964028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028970743", 
          "https://doi.org/10.1038/82360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/82360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028970743", 
          "https://doi.org/10.1038/82360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.8.2444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035928070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/640075.640087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039424295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/640075.640087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039424295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/75556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044135237", 
          "https://doi.org/10.1038/75556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/16.1.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044479977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.1.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048892448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652703322756168", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/hima.2013.6615020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094066595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cec.2012.6256573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094337224"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nabic.2011.6089601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094745767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ijcbs.2009.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095136493"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "The center of attention of the research in bioinformatics has been towards understanding the biological mechanisms and protein functions. Recently high throughput experimental methods have provided many protein-protein interaction networks which need to be analyzed to provide an insight into the functional role of proteins in living organism. One of the important problems of post-genomic era is to predict the functions of unannotated proteins. In this paper we propose a novel approach for protein function prediction by utilizing the fact that most of the proteins which are connected in protein-protein interaction network, tend to have similar functions. The method randomly associates unannotated protein with functions from the possible set of functions. Our approach, Artificial Bee Colony with Temporal Difference Q-Learning (ABC-TDQL), then optimizes the score function which incorporates the extent of similarity between the set of functions of unannotated protein and annotated protein, to associate a function to an unannotated protein. The approach was utilized to predict protein function of Saccharomyces Cerevisiae and the experimental results reveal that our proposed method outperforms other algorithms in terms of precession, recall and F-value.", 
    "editor": [
      {
        "familyName": "Panigrahi", 
        "givenName": "Bijaya Ketan", 
        "type": "Person"
      }, 
      {
        "familyName": "Suganthan", 
        "givenName": "Ponnuthurai Nagaratnam", 
        "type": "Person"
      }, 
      {
        "familyName": "Das", 
        "givenName": "Swagatam", 
        "type": "Person"
      }, 
      {
        "familyName": "Dash", 
        "givenName": "Shubhransu Sekhar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-03756-1_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-03755-4", 
        "978-3-319-03756-1"
      ], 
      "name": "Swarm, Evolutionary, and Memetic Computing", 
      "type": "Book"
    }, 
    "name": "Protein Function Prediction Using Adaptive Swarm Based Algorithm", 
    "pagination": "55-68", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-03756-1_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "14ca8101fbc8c131c8c999aacf363af51c4d0fb921310f9755be0a589a494c74"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004363319"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-03756-1_6", 
      "https://app.dimensions.ai/details/publication/pub.1004363319"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000245.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-03756-1_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_6'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-03756-1_6 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N35ac19e5e6ba4eb2ba531a4263f0ad1f
4 schema:citation sg:pub.10.1038/75556
5 sg:pub.10.1038/82360
6 sg:pub.10.1038/ng906
7 https://doi.org/10.1002/yea.706
8 https://doi.org/10.1073/pnas.85.8.2444
9 https://doi.org/10.1073/pnas.97.1.262
10 https://doi.org/10.1074/mcp.m100037-mcp200
11 https://doi.org/10.1089/106652703322756168
12 https://doi.org/10.1093/bioinformatics/16.1.10
13 https://doi.org/10.1093/nar/30.1.69
14 https://doi.org/10.1093/nar/gkj109
15 https://doi.org/10.1109/cec.2012.6256573
16 https://doi.org/10.1109/hima.2013.6615020
17 https://doi.org/10.1109/ijcbs.2009.109
18 https://doi.org/10.1109/nabic.2011.6089601
19 https://doi.org/10.1126/science.285.5428.751
20 https://doi.org/10.1145/640075.640087
21 https://doi.org/10.1371/journal.pcbi.0030042
22 schema:datePublished 2013
23 schema:datePublishedReg 2013-01-01
24 schema:description The center of attention of the research in bioinformatics has been towards understanding the biological mechanisms and protein functions. Recently high throughput experimental methods have provided many protein-protein interaction networks which need to be analyzed to provide an insight into the functional role of proteins in living organism. One of the important problems of post-genomic era is to predict the functions of unannotated proteins. In this paper we propose a novel approach for protein function prediction by utilizing the fact that most of the proteins which are connected in protein-protein interaction network, tend to have similar functions. The method randomly associates unannotated protein with functions from the possible set of functions. Our approach, Artificial Bee Colony with Temporal Difference Q-Learning (ABC-TDQL), then optimizes the score function which incorporates the extent of similarity between the set of functions of unannotated protein and annotated protein, to associate a function to an unannotated protein. The approach was utilized to predict protein function of Saccharomyces Cerevisiae and the experimental results reveal that our proposed method outperforms other algorithms in terms of precession, recall and F-value.
25 schema:editor N533a6ff4488b46bd8cb570de4ea1026c
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Na17ba1d778a34c14a965f4d6f1487886
30 schema:name Protein Function Prediction Using Adaptive Swarm Based Algorithm
31 schema:pagination 55-68
32 schema:productId N08ed671214d3404fa1dfbaec7de676ad
33 N53a2a557e7834bcab13678e271a29dad
34 N7401352f113d45bc856641cdc93f4b7a
35 schema:publisher Nb8a87212ce354fd0946e3e77791718e0
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004363319
37 https://doi.org/10.1007/978-3-319-03756-1_6
38 schema:sdDatePublished 2019-04-15T18:08
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N1e33ee5283b24a2387560677e3356648
41 schema:url http://link.springer.com/10.1007/978-3-319-03756-1_6
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N08ed671214d3404fa1dfbaec7de676ad schema:name dimensions_id
46 schema:value pub.1004363319
47 rdf:type schema:PropertyValue
48 N1e33ee5283b24a2387560677e3356648 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N280b3063c6394f42aa477f28c80292be rdf:first sg:person.013677575421.52
51 rdf:rest N829fc1ef20a1410fb04e7041eac79137
52 N35ac19e5e6ba4eb2ba531a4263f0ad1f rdf:first sg:person.013010050277.45
53 rdf:rest Ndfcf1cc178614ce3b9613a625eea9ca2
54 N533a6ff4488b46bd8cb570de4ea1026c rdf:first N5f274772c31c477dbfeb44cfb6abc98f
55 rdf:rest N87f5fc89c1e24e1db012a7f2b3b130b8
56 N53a2a557e7834bcab13678e271a29dad schema:name readcube_id
57 schema:value 14ca8101fbc8c131c8c999aacf363af51c4d0fb921310f9755be0a589a494c74
58 rdf:type schema:PropertyValue
59 N5c3658c633464f5c8cb44dd9a94dfebb schema:name CSE Department, TJS College of Engineering, Chennai, India
60 rdf:type schema:Organization
61 N5f274772c31c477dbfeb44cfb6abc98f schema:familyName Panigrahi
62 schema:givenName Bijaya Ketan
63 rdf:type schema:Person
64 N7401352f113d45bc856641cdc93f4b7a schema:name doi
65 schema:value 10.1007/978-3-319-03756-1_6
66 rdf:type schema:PropertyValue
67 N829fc1ef20a1410fb04e7041eac79137 rdf:first sg:person.013316247664.76
68 rdf:rest rdf:nil
69 N87f5fc89c1e24e1db012a7f2b3b130b8 rdf:first Na716357fcf8e404e9a6ec8726427a860
70 rdf:rest Nc3c649fb7d874346a7102179ff14b7df
71 N9521709274c04400b7a6b5d20b8e68dd rdf:first Nc3f67c33923147deb7f216394c1cfda9
72 rdf:rest rdf:nil
73 Na17ba1d778a34c14a965f4d6f1487886 schema:isbn 978-3-319-03755-4
74 978-3-319-03756-1
75 schema:name Swarm, Evolutionary, and Memetic Computing
76 rdf:type schema:Book
77 Na716357fcf8e404e9a6ec8726427a860 schema:familyName Suganthan
78 schema:givenName Ponnuthurai Nagaratnam
79 rdf:type schema:Person
80 Naf6c4786679446f7b929966ffc136f94 schema:familyName Das
81 schema:givenName Swagatam
82 rdf:type schema:Person
83 Nb8a87212ce354fd0946e3e77791718e0 schema:location Cham
84 schema:name Springer International Publishing
85 rdf:type schema:Organisation
86 Nc3c649fb7d874346a7102179ff14b7df rdf:first Naf6c4786679446f7b929966ffc136f94
87 rdf:rest N9521709274c04400b7a6b5d20b8e68dd
88 Nc3f67c33923147deb7f216394c1cfda9 schema:familyName Dash
89 schema:givenName Shubhransu Sekhar
90 rdf:type schema:Person
91 Ndfcf1cc178614ce3b9613a625eea9ca2 rdf:first sg:person.01337053064.29
92 rdf:rest N280b3063c6394f42aa477f28c80292be
93 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
94 schema:name Biological Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
97 schema:name Biochemistry and Cell Biology
98 rdf:type schema:DefinedTerm
99 sg:person.013010050277.45 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
100 schema:familyName Chowdhury
101 schema:givenName Archana
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013010050277.45
103 rdf:type schema:Person
104 sg:person.013316247664.76 schema:affiliation N5c3658c633464f5c8cb44dd9a94dfebb
105 schema:familyName Janarthanan
106 schema:givenName Ramadoss
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76
108 rdf:type schema:Person
109 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
110 schema:familyName Konar
111 schema:givenName Amit
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
113 rdf:type schema:Person
114 sg:person.013677575421.52 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
115 schema:familyName Rakshit
116 schema:givenName Pratyusha
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677575421.52
118 rdf:type schema:Person
119 sg:pub.10.1038/75556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044135237
120 https://doi.org/10.1038/75556
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/82360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028970743
123 https://doi.org/10.1038/82360
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/ng906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011675958
126 https://doi.org/10.1038/ng906
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1002/yea.706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011830580
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1073/pnas.85.8.2444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035928070
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1073/pnas.97.1.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048892448
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1074/mcp.m100037-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000521469
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1089/106652703322756168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204990
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1093/bioinformatics/16.1.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044479977
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/nar/30.1.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008565589
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/nar/gkj109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007734343
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/cec.2012.6256573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094337224
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/hima.2013.6615020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094066595
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/ijcbs.2009.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095136493
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/nabic.2011.6089601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094745767
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.285.5428.751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013411081
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1145/640075.640087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039424295
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1371/journal.pcbi.0030042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022964028
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
159 schema:name ETCE Department, Jadavpur University, Kolkata, India
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...