Feature Selection of Motor Imagery EEG Signals Using Firefly Temporal Difference Q-Learning and Support Vector Machine View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Saugat Bhattacharyya , Pratyusha Rakshit , Amit Konar , D. N. Tibarewala , Ramadoss Janarthanan

ABSTRACT

Electroencephalograph (EEG) based Brain-computer Inter- face (BCI) research provides a non-muscular communication to drive assistive devices using movement related signals, generated from the motor activation areas of the brain. The dimensions of the feature vector play an important role in BCI research, which not only increases the computational time but also reduces the accuracy of the classifiers. In this paper, we aim to reduce the redundant features of a feature vector obtained from motor imagery EEG signals to improve their corresponding classification. In this paper we have proposed a feature selection method based on Firefly Algorithm and Temporal Difference Q-Learning. Here, we have applied our proposed method to the wavelet transform features of a standard BCI competition dataset. Support Vector Machines have been employed to determine the fitness function of the proposed method and obtain the resultant classification accuracy. We have shown that the accuracy of the reduced feature are considerably higher than the original features. This paper also demonstrates the superiority of the new method to its competitor algorithms. More... »

PAGES

534-545

References to SciGraph publications

Book

TITLE

Swarm, Evolutionary, and Memetic Computing

ISBN

978-3-319-03755-4
978-3-319-03756-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_48

DOI

http://dx.doi.org/10.1007/978-3-319-03756-1_48

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020881603


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Dept. of Electronics and Telecommunication Engg., Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bhattacharyya", 
        "givenName": "Saugat", 
        "id": "sg:person.07421667055.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Dept. of Electronics and Telecommunication Engg., Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rakshit", 
        "givenName": "Pratyusha", 
        "id": "sg:person.013677575421.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677575421.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Dept. of Electronics and Telecommunication Engg., Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konar", 
        "givenName": "Amit", 
        "id": "sg:person.01337053064.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "School of Bioscience and Engg., Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tibarewala", 
        "givenName": "D. N.", 
        "id": "sg:person.010726132604.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Computer Science Dept., Jadavpur University, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janarthanan", 
        "givenName": "Ramadoss", 
        "id": "sg:person.013316247664.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-04944-6_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003585062", 
          "https://doi.org/10.1007/978-3-642-04944-6_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76928-6_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008573234", 
          "https://doi.org/10.1007/978-3-540-76928-6_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-76928-6_18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008573234", 
          "https://doi.org/10.1007/978-3-540-76928-6_18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wics.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012628338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008202821328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012950914", 
          "https://doi.org/10.1023/a:1008202821328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnins.2010.00034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023769110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-2440-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027312764", 
          "https://doi.org/10.1007/978-1-4757-2440-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(94)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027445618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-1684(94)90029-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027445618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.cs.04.060190.002221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036425691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.conb.2004.10.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036928178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1743-0003-7-60", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041127871", 
          "https://doi.org/10.1186/1743-0003-7-60"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2457(99)00141-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047824550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(94)90127-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052101887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-8655(94)90127-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052101887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1741-2560/4/2/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053010107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2003.814799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061739991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnsre.2007.906956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061740268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpwrd.2004.835281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061771571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tre.2000.847807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061784388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2007.909595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2007.4353015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077517208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iembs.2010.5627178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078305605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nabic.2011.6089601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094745767"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Electroencephalograph (EEG) based Brain-computer Inter- face (BCI) research provides a non-muscular communication to drive assistive devices using movement related signals, generated from the motor activation areas of the brain. The dimensions of the feature vector play an important role in BCI research, which not only increases the computational time but also reduces the accuracy of the classifiers. In this paper, we aim to reduce the redundant features of a feature vector obtained from motor imagery EEG signals to improve their corresponding classification. In this paper we have proposed a feature selection method based on Firefly Algorithm and Temporal Difference Q-Learning. Here, we have applied our proposed method to the wavelet transform features of a standard BCI competition dataset. Support Vector Machines have been employed to determine the fitness function of the proposed method and obtain the resultant classification accuracy. We have shown that the accuracy of the reduced feature are considerably higher than the original features. This paper also demonstrates the superiority of the new method to its competitor algorithms.", 
    "editor": [
      {
        "familyName": "Panigrahi", 
        "givenName": "Bijaya Ketan", 
        "type": "Person"
      }, 
      {
        "familyName": "Suganthan", 
        "givenName": "Ponnuthurai Nagaratnam", 
        "type": "Person"
      }, 
      {
        "familyName": "Das", 
        "givenName": "Swagatam", 
        "type": "Person"
      }, 
      {
        "familyName": "Dash", 
        "givenName": "Shubhransu Sekhar", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-03756-1_48", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-03755-4", 
        "978-3-319-03756-1"
      ], 
      "name": "Swarm, Evolutionary, and Memetic Computing", 
      "type": "Book"
    }, 
    "name": "Feature Selection of Motor Imagery EEG Signals Using Firefly Temporal Difference Q-Learning and Support Vector Machine", 
    "pagination": "534-545", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-03756-1_48"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "637e25c18f1b6599b0966f7f18f16b75df41c071c5b38339c4ef63298b44cb24"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020881603"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-03756-1_48", 
      "https://app.dimensions.ai/details/publication/pub.1020881603"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000256.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-03756-1_48"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_48'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_48'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_48'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03756-1_48'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-03756-1_48 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N48f6e682d74d475ca39dfb05e1b68d9c
4 schema:citation sg:pub.10.1007/978-1-4757-2440-0
5 sg:pub.10.1007/978-3-540-76928-6_18
6 sg:pub.10.1007/978-3-642-04944-6_14
7 sg:pub.10.1023/a:1008202821328
8 sg:pub.10.1186/1743-0003-7-60
9 https://doi.org/10.1002/wics.101
10 https://doi.org/10.1016/0165-1684(94)90029-9
11 https://doi.org/10.1016/0167-8655(94)90127-9
12 https://doi.org/10.1016/j.conb.2004.10.005
13 https://doi.org/10.1016/s1388-2457(99)00141-8
14 https://doi.org/10.1088/1741-2560/4/2/r01
15 https://doi.org/10.1109/iembs.2007.4353015
16 https://doi.org/10.1109/iembs.2010.5627178
17 https://doi.org/10.1109/nabic.2011.6089601
18 https://doi.org/10.1109/tnsre.2003.814799
19 https://doi.org/10.1109/tnsre.2007.906956
20 https://doi.org/10.1109/tpwrd.2004.835281
21 https://doi.org/10.1109/tre.2000.847807
22 https://doi.org/10.1109/tsmca.2007.909595
23 https://doi.org/10.1146/annurev.cs.04.060190.002221
24 https://doi.org/10.3389/fnins.2010.00034
25 schema:datePublished 2013
26 schema:datePublishedReg 2013-01-01
27 schema:description Electroencephalograph (EEG) based Brain-computer Inter- face (BCI) research provides a non-muscular communication to drive assistive devices using movement related signals, generated from the motor activation areas of the brain. The dimensions of the feature vector play an important role in BCI research, which not only increases the computational time but also reduces the accuracy of the classifiers. In this paper, we aim to reduce the redundant features of a feature vector obtained from motor imagery EEG signals to improve their corresponding classification. In this paper we have proposed a feature selection method based on Firefly Algorithm and Temporal Difference Q-Learning. Here, we have applied our proposed method to the wavelet transform features of a standard BCI competition dataset. Support Vector Machines have been employed to determine the fitness function of the proposed method and obtain the resultant classification accuracy. We have shown that the accuracy of the reduced feature are considerably higher than the original features. This paper also demonstrates the superiority of the new method to its competitor algorithms.
28 schema:editor N5f4136a07d034f258df507fa1db4548f
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf Nb9bc0b9289a74800a4b19f2da855a184
33 schema:name Feature Selection of Motor Imagery EEG Signals Using Firefly Temporal Difference Q-Learning and Support Vector Machine
34 schema:pagination 534-545
35 schema:productId N0217e6be3512458aae1f649c076bfd74
36 N8d6ec6b22195439a8ba2149a80d9684d
37 Nef998d4c17964961ab16515060aef314
38 schema:publisher N7a26c92e63874a7cbbea5e33dfc513db
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020881603
40 https://doi.org/10.1007/978-3-319-03756-1_48
41 schema:sdDatePublished 2019-04-15T18:10
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N2cb858d2b02342808c4b2bc235915cf7
44 schema:url http://link.springer.com/10.1007/978-3-319-03756-1_48
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N0217e6be3512458aae1f649c076bfd74 schema:name dimensions_id
49 schema:value pub.1020881603
50 rdf:type schema:PropertyValue
51 N0ab7e02f3e134b1abb5a43e5574e2901 schema:familyName Panigrahi
52 schema:givenName Bijaya Ketan
53 rdf:type schema:Person
54 N254ac4cf40c24cf4841df05cdcbe9456 rdf:first sg:person.013677575421.52
55 rdf:rest N37c1a9a72544462d8223eb8f2a8e66c7
56 N25da743de0c9453cb7fe5136334ea002 schema:familyName Suganthan
57 schema:givenName Ponnuthurai Nagaratnam
58 rdf:type schema:Person
59 N2cb858d2b02342808c4b2bc235915cf7 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N37c1a9a72544462d8223eb8f2a8e66c7 rdf:first sg:person.01337053064.29
62 rdf:rest N8166889b6ed84a34a5501890de12cdc3
63 N3c2e832d36db4419880d639b98e6ff99 schema:familyName Dash
64 schema:givenName Shubhransu Sekhar
65 rdf:type schema:Person
66 N3ead8ac295f84811ac19fe137b7644a4 rdf:first N25da743de0c9453cb7fe5136334ea002
67 rdf:rest N9d5e6224a3644d99851c3ae48a53ff8a
68 N48f6e682d74d475ca39dfb05e1b68d9c rdf:first sg:person.07421667055.72
69 rdf:rest N254ac4cf40c24cf4841df05cdcbe9456
70 N491d2aef40a24704be5f831d6255a2da rdf:first N3c2e832d36db4419880d639b98e6ff99
71 rdf:rest rdf:nil
72 N5f4136a07d034f258df507fa1db4548f rdf:first N0ab7e02f3e134b1abb5a43e5574e2901
73 rdf:rest N3ead8ac295f84811ac19fe137b7644a4
74 N78fbc24ce306441fa1d78087763ae581 schema:familyName Das
75 schema:givenName Swagatam
76 rdf:type schema:Person
77 N7a26c92e63874a7cbbea5e33dfc513db schema:location Cham
78 schema:name Springer International Publishing
79 rdf:type schema:Organisation
80 N8166889b6ed84a34a5501890de12cdc3 rdf:first sg:person.010726132604.03
81 rdf:rest Na3a0fa2c195643cb9b65d19c3cbab8dc
82 N8d6ec6b22195439a8ba2149a80d9684d schema:name doi
83 schema:value 10.1007/978-3-319-03756-1_48
84 rdf:type schema:PropertyValue
85 N9d5e6224a3644d99851c3ae48a53ff8a rdf:first N78fbc24ce306441fa1d78087763ae581
86 rdf:rest N491d2aef40a24704be5f831d6255a2da
87 Na3a0fa2c195643cb9b65d19c3cbab8dc rdf:first sg:person.013316247664.76
88 rdf:rest rdf:nil
89 Nb9bc0b9289a74800a4b19f2da855a184 schema:isbn 978-3-319-03755-4
90 978-3-319-03756-1
91 schema:name Swarm, Evolutionary, and Memetic Computing
92 rdf:type schema:Book
93 Nef998d4c17964961ab16515060aef314 schema:name readcube_id
94 schema:value 637e25c18f1b6599b0966f7f18f16b75df41c071c5b38339c4ef63298b44cb24
95 rdf:type schema:PropertyValue
96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
97 schema:name Information and Computing Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
100 schema:name Artificial Intelligence and Image Processing
101 rdf:type schema:DefinedTerm
102 sg:person.010726132604.03 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
103 schema:familyName Tibarewala
104 schema:givenName D. N.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010726132604.03
106 rdf:type schema:Person
107 sg:person.013316247664.76 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
108 schema:familyName Janarthanan
109 schema:givenName Ramadoss
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013316247664.76
111 rdf:type schema:Person
112 sg:person.01337053064.29 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
113 schema:familyName Konar
114 schema:givenName Amit
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337053064.29
116 rdf:type schema:Person
117 sg:person.013677575421.52 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
118 schema:familyName Rakshit
119 schema:givenName Pratyusha
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013677575421.52
121 rdf:type schema:Person
122 sg:person.07421667055.72 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
123 schema:familyName Bhattacharyya
124 schema:givenName Saugat
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07421667055.72
126 rdf:type schema:Person
127 sg:pub.10.1007/978-1-4757-2440-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027312764
128 https://doi.org/10.1007/978-1-4757-2440-0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/978-3-540-76928-6_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008573234
131 https://doi.org/10.1007/978-3-540-76928-6_18
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/978-3-642-04944-6_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003585062
134 https://doi.org/10.1007/978-3-642-04944-6_14
135 rdf:type schema:CreativeWork
136 sg:pub.10.1023/a:1008202821328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012950914
137 https://doi.org/10.1023/a:1008202821328
138 rdf:type schema:CreativeWork
139 sg:pub.10.1186/1743-0003-7-60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041127871
140 https://doi.org/10.1186/1743-0003-7-60
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/wics.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012628338
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0165-1684(94)90029-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027445618
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0167-8655(94)90127-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052101887
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.conb.2004.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036928178
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s1388-2457(99)00141-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047824550
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1088/1741-2560/4/2/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053010107
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/iembs.2007.4353015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077517208
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/iembs.2010.5627178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078305605
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/nabic.2011.6089601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094745767
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tnsre.2003.814799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061739991
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/tnsre.2007.906956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061740268
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/tpwrd.2004.835281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061771571
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/tre.2000.847807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061784388
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tsmca.2007.909595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795328
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1146/annurev.cs.04.060190.002221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036425691
171 rdf:type schema:CreativeWork
172 https://doi.org/10.3389/fnins.2010.00034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023769110
173 rdf:type schema:CreativeWork
174 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
175 schema:name Computer Science Dept., Jadavpur University, Kolkata, India
176 Dept. of Electronics and Telecommunication Engg., Jadavpur University, Kolkata, India
177 School of Bioscience and Engg., Jadavpur University, Kolkata, India
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...