Toward a Chemical Evolutionary Sequence in High-Mass Star Formation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Thomas Gerner , Henrik Beuther , Dmitry Semenov , Hendrik Linz , Tatiana Vasyunina , Thomas Henning

ABSTRACT

Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. The chemistry plays two main roles here: to study the evolution from simple to complex molecules, and to investigate the underlying physical processes. With these aims in mind, we observed a diverse sample of 60 high-mass star-forming regions in different evolutionary stages. In the early phase, quiescent Infrared Dark Clouds (IRDCs), consisting of cold and dense gas and dust, and emitting mainly at (sub-)millimeter wavelength, are formed. In the next phase, the so called High Mass Protostellar Objects (HMPOs) form, which host a central, likely still accreting protostar and already show emission at mid-infrared wavelengths. In the Hot Molecular Core phase (HMC) the central source heats up the surrounding environment, evaporating molecular-rich ices, which gives rise to a rich chemistry leading to complex molecules such as long carbon chains. Finally the UV-radiation from the embedded protostars ionizes the gas around and forms an Ultra Compact HII (UCHII) region. In these objects many of the previously formed complex molecules are not longer detected as they got destroyed by the ionizing radiation. For our observations, we used the IRAM 30m telescope with the total bandpass of 16 GHz and good spectral resolution (∼0.3∕0.7 km/s at 1/3 mm). We derived their large-scale chemical abundances, assuming LTE and optically thin emission. To set these results into context, we model the chemical evolution in such environments with a state-of-the-art chemical model. This enables us to put constraints on the chemical evolution, the age and parameters such as the temperature and the density of the molecular clouds. More... »

PAGES

415-416

Book

TITLE

The Labyrinth of Star Formation

ISBN

978-3-319-03040-1
978-3-319-03041-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-03041-8_81

DOI

http://dx.doi.org/10.1007/978-3-319-03041-8_81

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037719344


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy", 
          "id": "https://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Astronomie, K\u00f6nigstuhl 17, D-69117\u00a0Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerner", 
        "givenName": "Thomas", 
        "id": "sg:person.013717010447.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013717010447.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy", 
          "id": "https://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Astronomie, K\u00f6nigstuhl 17, D-69117\u00a0Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beuther", 
        "givenName": "Henrik", 
        "id": "sg:person.07536755263.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536755263.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy", 
          "id": "https://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Astronomie, K\u00f6nigstuhl 17, D-69117\u00a0Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenov", 
        "givenName": "Dmitry", 
        "id": "sg:person.013166203321.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166203321.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy", 
          "id": "https://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Astronomie, K\u00f6nigstuhl 17, D-69117\u00a0Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linz", 
        "givenName": "Hendrik", 
        "id": "sg:person.016151701703.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016151701703.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "University of Virginia, Charlottesville, VA\u00a022904, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasyunina", 
        "givenName": "Tatiana", 
        "id": "sg:person.013020042171.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020042171.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Astronomy", 
          "id": "https://www.grid.ac/institutes/grid.429508.2", 
          "name": [
            "Max-Planck-Institut f\u00fcr Astronomie, K\u00f6nigstuhl 17, D-69117\u00a0Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Henning", 
        "givenName": "Thomas", 
        "id": "sg:person.0604425255.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604425255.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1051/0004-6361/201015149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056915277"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. The chemistry plays two main roles here: to study the evolution from simple to complex molecules, and to investigate the underlying physical processes. With these aims in mind, we observed a diverse sample of 60 high-mass star-forming regions in different evolutionary stages. In the early phase, quiescent Infrared Dark Clouds (IRDCs), consisting of cold and dense gas and dust, and emitting mainly at (sub-)millimeter wavelength, are formed. In the next phase, the so called High Mass Protostellar Objects (HMPOs) form, which host a central, likely still accreting protostar and already show emission at mid-infrared wavelengths. In the Hot Molecular Core phase (HMC) the central source heats up the surrounding environment, evaporating molecular-rich ices, which gives rise to a rich chemistry leading to complex molecules such as long carbon chains. Finally the UV-radiation from the embedded protostars ionizes the gas around and forms an Ultra Compact HII (UCHII) region. In these objects many of the previously formed complex molecules are not longer detected as they got destroyed by the ionizing radiation. For our observations, we used the IRAM 30m telescope with the total bandpass of 16 GHz and good spectral resolution (\u223c0.3\u22150.7 km/s at 1/3 mm). We derived their large-scale chemical abundances, assuming LTE and optically thin emission. To set these results into context, we model the chemical evolution in such environments with a state-of-the-art chemical model. This enables us to put constraints on the chemical evolution, the age and parameters such as the temperature and the density of the molecular clouds.", 
    "editor": [
      {
        "familyName": "Stamatellos", 
        "givenName": "Dimitris", 
        "type": "Person"
      }, 
      {
        "familyName": "Goodwin", 
        "givenName": "Simon", 
        "type": "Person"
      }, 
      {
        "familyName": "Ward-Thompson", 
        "givenName": "Derek", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-03041-8_81", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-03040-1", 
        "978-3-319-03041-8"
      ], 
      "name": "The Labyrinth of Star Formation", 
      "type": "Book"
    }, 
    "name": "Toward a Chemical Evolutionary Sequence in High-Mass Star Formation", 
    "pagination": "415-416", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-03041-8_81"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3aea648b96e5a92e7860a913b5f0caefcb77e84286527181654c450acb76303"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037719344"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-03041-8_81", 
      "https://app.dimensions.ai/details/publication/pub.1037719344"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T00:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000266.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-03041-8_81"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03041-8_81'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03041-8_81'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03041-8_81'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-03041-8_81'


 

This table displays all metadata directly associated to this object as RDF triples.

116 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-03041-8_81 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author N3e0e7c75af254abe9611cc6cf808483f
4 schema:citation https://doi.org/10.1051/0004-6361/201015149
5 schema:datePublished 2014
6 schema:datePublishedReg 2014-01-01
7 schema:description Understanding the chemical evolution of young (high-mass) star-forming regions is a central topic in star formation research. The chemistry plays two main roles here: to study the evolution from simple to complex molecules, and to investigate the underlying physical processes. With these aims in mind, we observed a diverse sample of 60 high-mass star-forming regions in different evolutionary stages. In the early phase, quiescent Infrared Dark Clouds (IRDCs), consisting of cold and dense gas and dust, and emitting mainly at (sub-)millimeter wavelength, are formed. In the next phase, the so called High Mass Protostellar Objects (HMPOs) form, which host a central, likely still accreting protostar and already show emission at mid-infrared wavelengths. In the Hot Molecular Core phase (HMC) the central source heats up the surrounding environment, evaporating molecular-rich ices, which gives rise to a rich chemistry leading to complex molecules such as long carbon chains. Finally the UV-radiation from the embedded protostars ionizes the gas around and forms an Ultra Compact HII (UCHII) region. In these objects many of the previously formed complex molecules are not longer detected as they got destroyed by the ionizing radiation. For our observations, we used the IRAM 30m telescope with the total bandpass of 16 GHz and good spectral resolution (∼0.3∕0.7 km/s at 1/3 mm). We derived their large-scale chemical abundances, assuming LTE and optically thin emission. To set these results into context, we model the chemical evolution in such environments with a state-of-the-art chemical model. This enables us to put constraints on the chemical evolution, the age and parameters such as the temperature and the density of the molecular clouds.
8 schema:editor N68ece60444c1451bb24d8d10bee29808
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nad87af639aa0493293b6079a5d0f2519
13 schema:name Toward a Chemical Evolutionary Sequence in High-Mass Star Formation
14 schema:pagination 415-416
15 schema:productId N9a5e5769baa8417fa921ad8184c0b5ba
16 Na619b5ad39544a1595e4a066ea093e3d
17 Nae203aa852d1416682258ca77c0e46d6
18 schema:publisher N18a11bdabc3a4d06bbb1a1f6add5473c
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037719344
20 https://doi.org/10.1007/978-3-319-03041-8_81
21 schema:sdDatePublished 2019-04-16T00:50
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nbaa3d954313a4b3daf3922f703be68b0
24 schema:url http://link.springer.com/10.1007/978-3-319-03041-8_81
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N18a11bdabc3a4d06bbb1a1f6add5473c schema:location Cham
29 schema:name Springer International Publishing
30 rdf:type schema:Organisation
31 N35f4881ba1004015bbe2d6083972e1a6 rdf:first sg:person.0604425255.94
32 rdf:rest rdf:nil
33 N3bc7c9b9e10448929e0b8b3bd3451d56 rdf:first sg:person.013020042171.90
34 rdf:rest N35f4881ba1004015bbe2d6083972e1a6
35 N3e0e7c75af254abe9611cc6cf808483f rdf:first sg:person.013717010447.42
36 rdf:rest N4e9b1b6936e74b1980a2b244c8ca55d8
37 N4e9b1b6936e74b1980a2b244c8ca55d8 rdf:first sg:person.07536755263.24
38 rdf:rest N848000dfdbc8421bbee14074026fdf61
39 N68ece60444c1451bb24d8d10bee29808 rdf:first N810aaa767e214320bbd9d84d084b4ed2
40 rdf:rest Ndaa7edac9bd04c838750803de12c5772
41 N6f98d1a3edad4428b1835b837e7d06b4 rdf:first Nef5bb099ef2b458ab83eefe265e8204a
42 rdf:rest rdf:nil
43 N810aaa767e214320bbd9d84d084b4ed2 schema:familyName Stamatellos
44 schema:givenName Dimitris
45 rdf:type schema:Person
46 N848000dfdbc8421bbee14074026fdf61 rdf:first sg:person.013166203321.09
47 rdf:rest Nb780e1ad6f344586af02b69e77b79a07
48 N9a5e5769baa8417fa921ad8184c0b5ba schema:name doi
49 schema:value 10.1007/978-3-319-03041-8_81
50 rdf:type schema:PropertyValue
51 N9d6e69f3424f4eee90b5d180d31d8e39 schema:familyName Goodwin
52 schema:givenName Simon
53 rdf:type schema:Person
54 Na619b5ad39544a1595e4a066ea093e3d schema:name readcube_id
55 schema:value b3aea648b96e5a92e7860a913b5f0caefcb77e84286527181654c450acb76303
56 rdf:type schema:PropertyValue
57 Nad87af639aa0493293b6079a5d0f2519 schema:isbn 978-3-319-03040-1
58 978-3-319-03041-8
59 schema:name The Labyrinth of Star Formation
60 rdf:type schema:Book
61 Nae203aa852d1416682258ca77c0e46d6 schema:name dimensions_id
62 schema:value pub.1037719344
63 rdf:type schema:PropertyValue
64 Nb780e1ad6f344586af02b69e77b79a07 rdf:first sg:person.016151701703.46
65 rdf:rest N3bc7c9b9e10448929e0b8b3bd3451d56
66 Nbaa3d954313a4b3daf3922f703be68b0 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Ndaa7edac9bd04c838750803de12c5772 rdf:first N9d6e69f3424f4eee90b5d180d31d8e39
69 rdf:rest N6f98d1a3edad4428b1835b837e7d06b4
70 Nef5bb099ef2b458ab83eefe265e8204a schema:familyName Ward-Thompson
71 schema:givenName Derek
72 rdf:type schema:Person
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
77 schema:name Astronomical and Space Sciences
78 rdf:type schema:DefinedTerm
79 sg:person.013020042171.90 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
80 schema:familyName Vasyunina
81 schema:givenName Tatiana
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013020042171.90
83 rdf:type schema:Person
84 sg:person.013166203321.09 schema:affiliation https://www.grid.ac/institutes/grid.429508.2
85 schema:familyName Semenov
86 schema:givenName Dmitry
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166203321.09
88 rdf:type schema:Person
89 sg:person.013717010447.42 schema:affiliation https://www.grid.ac/institutes/grid.429508.2
90 schema:familyName Gerner
91 schema:givenName Thomas
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013717010447.42
93 rdf:type schema:Person
94 sg:person.016151701703.46 schema:affiliation https://www.grid.ac/institutes/grid.429508.2
95 schema:familyName Linz
96 schema:givenName Hendrik
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016151701703.46
98 rdf:type schema:Person
99 sg:person.0604425255.94 schema:affiliation https://www.grid.ac/institutes/grid.429508.2
100 schema:familyName Henning
101 schema:givenName Thomas
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604425255.94
103 rdf:type schema:Person
104 sg:person.07536755263.24 schema:affiliation https://www.grid.ac/institutes/grid.429508.2
105 schema:familyName Beuther
106 schema:givenName Henrik
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07536755263.24
108 rdf:type schema:Person
109 https://doi.org/10.1051/0004-6361/201015149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056915277
110 rdf:type schema:CreativeWork
111 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
112 schema:name University of Virginia, Charlottesville, VA 22904, USA
113 rdf:type schema:Organization
114 https://www.grid.ac/institutes/grid.429508.2 schema:alternateName Max Planck Institute for Astronomy
115 schema:name Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
116 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...