Estimation of Changes in Mechanical Bone Quality by Multi-scale Analysis with Remodeling Simulation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

D. Tawara , K. Nagura , T. Tsujikami , T. Adachi

ABSTRACT

Mechanical bone quality and its related load-supporting function at the macro-scale is a result of adaptation, which is achieved by trabecular bone remodeling at the microscale. The increase in fracture risk in patients with osteoporosis is a clear example of this structure/function relationship, where decreased bone mass as a result of structural changes during remodeling leads to changes in the stress distribution of trabecular bone. This stress distribution is closely associated with the morphology and orientation of the nano-scale biological apatite (BAp) crystallite - the main factor determining bone quality. It is therefore important to evaluate both the changes in mechanical bone quality and bone mass when predicting fracture risk. We propose a computational model of remodeling and multi-scale stress analysis of trabecular bone based on homogenization techniques, considering the mechanical properties of the BAp crystallite orientation to be anisotropic. We first identified morphological changes in healthy and osteoporotic cases, and then performed a multi-scale stress analysis for the remodeled osteoporotic trabecular bone to elucidate changes in mechanical bone quality leading to fracture risk. Our results demonstrate that the load-supporting function of remodeled bone correlates with mechanical adaptability to external loads through remodeling, despite a progressive decrease in bone mass. These findings suggest the potential to use changes in mechanical bone quality as a predictor of fracture risk. The availability of these simulation methods for bone quality evaluation is discussed. More... »

PAGES

48-51

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-02913-9_13

DOI

http://dx.doi.org/10.1007/978-3-319-02913-9_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042346153


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Systems Engineering, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.440926.d", 
          "name": [
            "Department of Mechanical and Systems Engineering, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tawara", 
        "givenName": "D.", 
        "id": "sg:person.07610574306.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07610574306.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.440926.d", 
          "name": [
            "Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagura", 
        "givenName": "K.", 
        "id": "sg:person.011704547705.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011704547705.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Systems Engineering, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan", 
          "id": "http://www.grid.ac/institutes/grid.440926.d", 
          "name": [
            "Department of Mechanical and Systems Engineering, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsujikami", 
        "givenName": "T.", 
        "id": "sg:person.014050613461.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014050613461.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan", 
          "id": "http://www.grid.ac/institutes/grid.258799.8", 
          "name": [
            "Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adachi", 
        "givenName": "T.", 
        "id": "sg:person.015106612035.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015106612035.41"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Mechanical bone quality and its related load-supporting function at the macro-scale is a result of adaptation, which is achieved by trabecular bone remodeling at the microscale. The increase in fracture risk in patients with osteoporosis is a clear example of this structure/function relationship, where decreased bone mass as a result of structural changes during remodeling leads to changes in the stress distribution of trabecular bone. This stress distribution is closely associated with the morphology and orientation of the nano-scale biological apatite (BAp) crystallite - the main factor determining bone quality. It is therefore important to evaluate both the changes in mechanical bone quality and bone mass when predicting fracture risk. We propose a computational model of remodeling and multi-scale stress analysis of trabecular bone based on homogenization techniques, considering the mechanical properties of the BAp crystallite orientation to be anisotropic. We first identified morphological changes in healthy and osteoporotic cases, and then performed a multi-scale stress analysis for the remodeled osteoporotic trabecular bone to elucidate changes in mechanical bone quality leading to fracture risk. Our results demonstrate that the load-supporting function of remodeled bone correlates with mechanical adaptability to external loads through remodeling, despite a progressive decrease in bone mass. These findings suggest the potential to use changes in mechanical bone quality as a predictor of fracture risk. The availability of these simulation methods for bone quality evaluation is discussed.", 
    "editor": [
      {
        "familyName": "Goh", 
        "givenName": "James", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-02913-9_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-02912-2", 
        "978-3-319-02913-9"
      ], 
      "name": "The 15th International Conference on Biomedical Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "multi-scale stress analysis", 
      "mechanical bone quality", 
      "stress distribution", 
      "stress analysis", 
      "bone quality", 
      "fracture risk", 
      "bone mass", 
      "osteoporotic trabecular bone", 
      "remodeling simulation", 
      "mechanical properties", 
      "multi-scale analysis", 
      "trabecular bone", 
      "external load", 
      "mechanical adaptability", 
      "homogenization technique", 
      "bone quality evaluation", 
      "biological apatite crystallites", 
      "simulation method", 
      "crystallite orientation", 
      "apatite crystallites", 
      "computational model", 
      "osteoporotic cases", 
      "risk", 
      "progressive decrease", 
      "bone", 
      "estimation of changes", 
      "microscale", 
      "main factors", 
      "load", 
      "morphological changes", 
      "simulations", 
      "crystallites", 
      "orientation", 
      "patients", 
      "osteoporosis", 
      "properties", 
      "distribution", 
      "quality evaluation", 
      "morphology", 
      "remodeling", 
      "changes", 
      "results", 
      "predictors", 
      "estimation", 
      "quality", 
      "correlates", 
      "mass", 
      "structural changes", 
      "findings", 
      "technique", 
      "analysis", 
      "function", 
      "method", 
      "structure/function relationships", 
      "model", 
      "decrease", 
      "factors", 
      "result of adaptation", 
      "cases", 
      "evaluation", 
      "function relationships", 
      "increase", 
      "adaptability", 
      "lead", 
      "potential", 
      "example", 
      "relationship", 
      "adaptation", 
      "availability", 
      "clear example", 
      "related load-supporting function", 
      "load-supporting function", 
      "nano-scale biological apatite (BAp) crystallite", 
      "BAp crystallite orientation", 
      "remodeled osteoporotic trabecular bone", 
      "remodeled bone correlates", 
      "bone correlates"
    ], 
    "name": "Estimation of Changes in Mechanical Bone Quality by Multi-scale Analysis with Remodeling Simulation", 
    "pagination": "48-51", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042346153"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-02913-9_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-02913-9_13", 
      "https://app.dimensions.ai/details/publication/pub.1042346153"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_296.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-02913-9_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02913-9_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02913-9_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02913-9_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02913-9_13'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      23 PREDICATES      105 URIs      96 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-02913-9_13 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 anzsrc-for:11
4 anzsrc-for:1103
5 schema:author Ndb84bc7f7cd441fc8a72834e83449435
6 schema:datePublished 2014
7 schema:datePublishedReg 2014-01-01
8 schema:description Mechanical bone quality and its related load-supporting function at the macro-scale is a result of adaptation, which is achieved by trabecular bone remodeling at the microscale. The increase in fracture risk in patients with osteoporosis is a clear example of this structure/function relationship, where decreased bone mass as a result of structural changes during remodeling leads to changes in the stress distribution of trabecular bone. This stress distribution is closely associated with the morphology and orientation of the nano-scale biological apatite (BAp) crystallite - the main factor determining bone quality. It is therefore important to evaluate both the changes in mechanical bone quality and bone mass when predicting fracture risk. We propose a computational model of remodeling and multi-scale stress analysis of trabecular bone based on homogenization techniques, considering the mechanical properties of the BAp crystallite orientation to be anisotropic. We first identified morphological changes in healthy and osteoporotic cases, and then performed a multi-scale stress analysis for the remodeled osteoporotic trabecular bone to elucidate changes in mechanical bone quality leading to fracture risk. Our results demonstrate that the load-supporting function of remodeled bone correlates with mechanical adaptability to external loads through remodeling, despite a progressive decrease in bone mass. These findings suggest the potential to use changes in mechanical bone quality as a predictor of fracture risk. The availability of these simulation methods for bone quality evaluation is discussed.
9 schema:editor N64fa9ff5a7234736a397326a67d7cd86
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N0e6f66cc44934a94bca1639174511274
14 schema:keywords BAp crystallite orientation
15 adaptability
16 adaptation
17 analysis
18 apatite crystallites
19 availability
20 biological apatite crystallites
21 bone
22 bone correlates
23 bone mass
24 bone quality
25 bone quality evaluation
26 cases
27 changes
28 clear example
29 computational model
30 correlates
31 crystallite orientation
32 crystallites
33 decrease
34 distribution
35 estimation
36 estimation of changes
37 evaluation
38 example
39 external load
40 factors
41 findings
42 fracture risk
43 function
44 function relationships
45 homogenization technique
46 increase
47 lead
48 load
49 load-supporting function
50 main factors
51 mass
52 mechanical adaptability
53 mechanical bone quality
54 mechanical properties
55 method
56 microscale
57 model
58 morphological changes
59 morphology
60 multi-scale analysis
61 multi-scale stress analysis
62 nano-scale biological apatite (BAp) crystallite
63 orientation
64 osteoporosis
65 osteoporotic cases
66 osteoporotic trabecular bone
67 patients
68 potential
69 predictors
70 progressive decrease
71 properties
72 quality
73 quality evaluation
74 related load-supporting function
75 relationship
76 remodeled bone correlates
77 remodeled osteoporotic trabecular bone
78 remodeling
79 remodeling simulation
80 result of adaptation
81 results
82 risk
83 simulation method
84 simulations
85 stress analysis
86 stress distribution
87 structural changes
88 structure/function relationships
89 technique
90 trabecular bone
91 schema:name Estimation of Changes in Mechanical Bone Quality by Multi-scale Analysis with Remodeling Simulation
92 schema:pagination 48-51
93 schema:productId N8c8b007167b84c50912fa8bebccd8841
94 N997f7d5ab5f34d79984233aaf817ed3e
95 schema:publisher Nc5d5987e3c4847678eabb84b1b687e67
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042346153
97 https://doi.org/10.1007/978-3-319-02913-9_13
98 schema:sdDatePublished 2022-01-01T19:17
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher Nf33f7bdfaca94133abdfbc119d0e9984
101 schema:url https://doi.org/10.1007/978-3-319-02913-9_13
102 sgo:license sg:explorer/license/
103 sgo:sdDataset chapters
104 rdf:type schema:Chapter
105 N0e6f66cc44934a94bca1639174511274 schema:isbn 978-3-319-02912-2
106 978-3-319-02913-9
107 schema:name The 15th International Conference on Biomedical Engineering
108 rdf:type schema:Book
109 N18989d1fb22a4b09a1bb1f6ac2729f09 schema:familyName Goh
110 schema:givenName James
111 rdf:type schema:Person
112 N2d84e77885e04b308388991f46608702 rdf:first sg:person.011704547705.45
113 rdf:rest Nfc3eff8f652f4dd58610576e95825942
114 N64fa9ff5a7234736a397326a67d7cd86 rdf:first N18989d1fb22a4b09a1bb1f6ac2729f09
115 rdf:rest rdf:nil
116 N8c8b007167b84c50912fa8bebccd8841 schema:name dimensions_id
117 schema:value pub.1042346153
118 rdf:type schema:PropertyValue
119 N997f7d5ab5f34d79984233aaf817ed3e schema:name doi
120 schema:value 10.1007/978-3-319-02913-9_13
121 rdf:type schema:PropertyValue
122 Nc5d5987e3c4847678eabb84b1b687e67 schema:name Springer Nature
123 rdf:type schema:Organisation
124 Nd5cc947715844453accc17516bc9b2c9 rdf:first sg:person.015106612035.41
125 rdf:rest rdf:nil
126 Ndb84bc7f7cd441fc8a72834e83449435 rdf:first sg:person.07610574306.13
127 rdf:rest N2d84e77885e04b308388991f46608702
128 Nf33f7bdfaca94133abdfbc119d0e9984 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Nfc3eff8f652f4dd58610576e95825942 rdf:first sg:person.014050613461.18
131 rdf:rest Nd5cc947715844453accc17516bc9b2c9
132 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
133 schema:name Engineering
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
136 schema:name Biomedical Engineering
137 rdf:type schema:DefinedTerm
138 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
139 schema:name Medical and Health Sciences
140 rdf:type schema:DefinedTerm
141 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
142 schema:name Clinical Sciences
143 rdf:type schema:DefinedTerm
144 sg:person.011704547705.45 schema:affiliation grid-institutes:grid.440926.d
145 schema:familyName Nagura
146 schema:givenName K.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011704547705.45
148 rdf:type schema:Person
149 sg:person.014050613461.18 schema:affiliation grid-institutes:grid.440926.d
150 schema:familyName Tsujikami
151 schema:givenName T.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014050613461.18
153 rdf:type schema:Person
154 sg:person.015106612035.41 schema:affiliation grid-institutes:grid.258799.8
155 schema:familyName Adachi
156 schema:givenName T.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015106612035.41
158 rdf:type schema:Person
159 sg:person.07610574306.13 schema:affiliation grid-institutes:grid.440926.d
160 schema:familyName Tawara
161 schema:givenName D.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07610574306.13
163 rdf:type schema:Person
164 grid-institutes:grid.258799.8 schema:alternateName Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
165 schema:name Department of Biomechanics, Research Center for Nano Medical Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
166 rdf:type schema:Organization
167 grid-institutes:grid.440926.d schema:alternateName Department of Mechanical and Systems Engineering, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan
168 Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan
169 schema:name Department of Mechanical and Systems Engineering, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan
170 Graduate School of Science and Technology, Ryukoku University, 1-5 Yokotani, Seta, Otsu, Japan
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...