Experimental Manifestation of Berry Phase in Graphene View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Andrea F. Young , Yuanbo Zhang , Philip Kim

ABSTRACT

The honeycomb lattice structure of graphene requires an additional degree of freedom, termed as pseudo spin, to describe the orbital wave functions sitting in two different sublattices of the honeycomb lattice. In the low energy spectrum of graphene near the charge neutrality point, where the linear carrier dispersion mimics the quasi-relativistic dispersion relation, pseudo spin replaces the role of real spin in the usual Dirac Fermion spectrum. The exotic quantum transport behavior discovered in graphene, such as the unusual half-integer quantum Hall effect and Klein tunneling effect, are a direct consequence of the pseudo spin rotation. In this chapter we will discuss the non-trivial Berry phase arising from the pseudo spin rotation in monolayer graphene under a magnetic field and its experimental consequences. More... »

PAGES

3-27

Book

TITLE

Physics of Graphene

ISBN

978-3-319-02632-9
978-3-319-02633-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-02633-6_1

DOI

http://dx.doi.org/10.1007/978-3-319-02633-6_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025276883


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, MIT, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Young", 
        "givenName": "Andrea F.", 
        "id": "sg:person.01067623275.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067623275.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fudan University", 
          "id": "https://www.grid.ac/institutes/grid.8547.e", 
          "name": [
            "Department of Physics, Fudan University, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yuanbo", 
        "id": "sg:person.0657076451.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657076451.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Physics, Columbia University, New York, NY\u00a010027, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Philip", 
        "id": "sg:person.0722660612.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722660612.29"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The honeycomb lattice structure of graphene requires an additional degree of freedom, termed as pseudo spin, to describe the orbital wave functions sitting in two different sublattices of the honeycomb lattice. In the low energy spectrum of graphene near the charge neutrality point, where the linear carrier dispersion mimics the quasi-relativistic dispersion relation, pseudo spin replaces the role of real spin in the usual Dirac Fermion spectrum. The exotic quantum transport behavior discovered in graphene, such as the unusual half-integer quantum Hall effect and Klein tunneling effect, are a direct consequence of the pseudo spin rotation. In this chapter we will discuss the non-trivial Berry phase arising from the pseudo spin rotation in monolayer graphene under a magnetic field and its experimental consequences.", 
    "editor": [
      {
        "familyName": "Aoki", 
        "givenName": "Hideo", 
        "type": "Person"
      }, 
      {
        "familyName": "S. Dresselhaus", 
        "givenName": "Mildred", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-02633-6_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-02632-9", 
        "978-3-319-02633-6"
      ], 
      "name": "Physics of Graphene", 
      "type": "Book"
    }, 
    "name": "Experimental Manifestation of Berry Phase in Graphene", 
    "pagination": "3-27", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-02633-6_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "786b58bb34d64e0e418ccd6c24bde73c4a5d9207e3aa80893e3a1b38210fd6dc"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025276883"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-02633-6_1", 
      "https://app.dimensions.ai/details/publication/pub.1025276883"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000043.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-02633-6_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02633-6_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02633-6_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02633-6_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02633-6_1'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-02633-6_1 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Na6d0dd9de256406187b16adfdfbfa27a
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description The honeycomb lattice structure of graphene requires an additional degree of freedom, termed as pseudo spin, to describe the orbital wave functions sitting in two different sublattices of the honeycomb lattice. In the low energy spectrum of graphene near the charge neutrality point, where the linear carrier dispersion mimics the quasi-relativistic dispersion relation, pseudo spin replaces the role of real spin in the usual Dirac Fermion spectrum. The exotic quantum transport behavior discovered in graphene, such as the unusual half-integer quantum Hall effect and Klein tunneling effect, are a direct consequence of the pseudo spin rotation. In this chapter we will discuss the non-trivial Berry phase arising from the pseudo spin rotation in monolayer graphene under a magnetic field and its experimental consequences.
7 schema:editor N7a452fd727b94618bcda1fa7713d7f33
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N35121903e7884881a59fe2f2403fc7bc
12 schema:name Experimental Manifestation of Berry Phase in Graphene
13 schema:pagination 3-27
14 schema:productId N227d04ee0fae4201a9f9060f9fe23c6a
15 N36ccf96f861342ce8045c8c41a219c29
16 Nd45655fcd3b146999cdb2ad1cdc972ed
17 schema:publisher Nbbc663c31bac47e4b204390d96c4d495
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025276883
19 https://doi.org/10.1007/978-3-319-02633-6_1
20 schema:sdDatePublished 2019-04-15T18:56
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nfaff9572652545ef9b0b0c896e977eeb
23 schema:url http://link.springer.com/10.1007/978-3-319-02633-6_1
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N176f7c18cbab45d6873990d3236b6006 schema:familyName S. Dresselhaus
28 schema:givenName Mildred
29 rdf:type schema:Person
30 N227d04ee0fae4201a9f9060f9fe23c6a schema:name readcube_id
31 schema:value 786b58bb34d64e0e418ccd6c24bde73c4a5d9207e3aa80893e3a1b38210fd6dc
32 rdf:type schema:PropertyValue
33 N35121903e7884881a59fe2f2403fc7bc schema:isbn 978-3-319-02632-9
34 978-3-319-02633-6
35 schema:name Physics of Graphene
36 rdf:type schema:Book
37 N36ccf96f861342ce8045c8c41a219c29 schema:name doi
38 schema:value 10.1007/978-3-319-02633-6_1
39 rdf:type schema:PropertyValue
40 N51fe983392b742599c007a68eb46a43a rdf:first N176f7c18cbab45d6873990d3236b6006
41 rdf:rest rdf:nil
42 N7a452fd727b94618bcda1fa7713d7f33 rdf:first Nbdebf7be69a34c2d88981f93e7ae1edd
43 rdf:rest N51fe983392b742599c007a68eb46a43a
44 Na6d0dd9de256406187b16adfdfbfa27a rdf:first sg:person.01067623275.94
45 rdf:rest Nd52a8700d64b4003a5d4e8a588932011
46 Na819f0abab994db3bc0555a7f0d3a471 rdf:first sg:person.0722660612.29
47 rdf:rest rdf:nil
48 Nbbc663c31bac47e4b204390d96c4d495 schema:location Cham
49 schema:name Springer International Publishing
50 rdf:type schema:Organisation
51 Nbdebf7be69a34c2d88981f93e7ae1edd schema:familyName Aoki
52 schema:givenName Hideo
53 rdf:type schema:Person
54 Nd45655fcd3b146999cdb2ad1cdc972ed schema:name dimensions_id
55 schema:value pub.1025276883
56 rdf:type schema:PropertyValue
57 Nd52a8700d64b4003a5d4e8a588932011 rdf:first sg:person.0657076451.24
58 rdf:rest Na819f0abab994db3bc0555a7f0d3a471
59 Nfaff9572652545ef9b0b0c896e977eeb schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
62 schema:name Physical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
65 schema:name Condensed Matter Physics
66 rdf:type schema:DefinedTerm
67 sg:person.01067623275.94 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
68 schema:familyName Young
69 schema:givenName Andrea F.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067623275.94
71 rdf:type schema:Person
72 sg:person.0657076451.24 schema:affiliation https://www.grid.ac/institutes/grid.8547.e
73 schema:familyName Zhang
74 schema:givenName Yuanbo
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657076451.24
76 rdf:type schema:Person
77 sg:person.0722660612.29 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
78 schema:familyName Kim
79 schema:givenName Philip
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722660612.29
81 rdf:type schema:Person
82 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
83 schema:name Department of Physics, MIT, Cambridge, MA, USA
84 rdf:type schema:Organization
85 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
86 schema:name Department of Physics, Columbia University, New York, NY 10027, USA
87 rdf:type schema:Organization
88 https://www.grid.ac/institutes/grid.8547.e schema:alternateName Fudan University
89 schema:name Department of Physics, Fudan University, Shanghai, China
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...