Spike-Timing-Dependent-Plasticity with Memristors View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

T. Serrano-Gotarredona , T. Masquelier , B. Linares-Barranco

ABSTRACT

(This chapter is reprints material from Zamarreño-Ramos et al. in Front. Neurosci. 5:26, 2011 and Serrano-Gotarredona et al. in Front. Neurosci. 7:02, 2013, with permission.) Here we present a very exciting overlap between emergent nano technology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nano technology devices to the biological synaptic update rule known as Spike-Time-Dependent-Plasticity found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on behavioral macro models for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forwards but also backwards. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can be assembled and how it is capable of learning to extract orientations from visual data coming from a real artificial CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim here is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three terminal memristive type devices. (A Supplemental Material compressed zip file containing all files used for the simulations can be downloaded from http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2011.00026/abstract.) More... »

PAGES

211-247

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-02630-5_11

DOI

http://dx.doi.org/10.1007/978-3-319-02630-5_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033460555


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto de Microelectronica de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain", 
          "id": "http://www.grid.ac/institutes/grid.507649.9", 
          "name": [
            "Instituto de Microelectronica de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Serrano-Gotarredona", 
        "givenName": "T.", 
        "id": "sg:person.0775210664.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775210664.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Neurobiology and Adaptive Processses, University Pierre et Marie Curie, 9 quai St. Bernard, 75005, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.462844.8", 
          "name": [
            "Laboratory of Neurobiology and Adaptive Processses, University Pierre et Marie Curie, 9 quai St. Bernard, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masquelier", 
        "givenName": "T.", 
        "id": "sg:person.01271016666.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271016666.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Microelectronica de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain", 
          "id": "http://www.grid.ac/institutes/grid.507649.9", 
          "name": [
            "Instituto de Microelectronica de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Linares-Barranco", 
        "givenName": "B.", 
        "id": "sg:person.01111437264.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111437264.42"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "Abstract(This chapter is reprints material from Zamarre\u00f1o-Ramos et al. in Front. Neurosci. 5:26, 2011 and Serrano-Gotarredona et al. in Front. Neurosci. 7:02, 2013, with permission.) Here we present a very exciting overlap between emergent nano technology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nano technology devices to the biological synaptic update rule known as Spike-Time-Dependent-Plasticity found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on behavioral macro models for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forwards but also backwards. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can be assembled and how it is capable of learning to extract orientations from visual data coming from a real artificial CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim here is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three terminal memristive type devices. (A Supplemental Material compressed zip file containing all files used for the simulations can be downloaded from http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2011.00026/abstract.)", 
    "editor": [
      {
        "familyName": "Adamatzky", 
        "givenName": "Andrew", 
        "type": "Person"
      }, 
      {
        "familyName": "Chua", 
        "givenName": "Leon", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-02630-5_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-02629-9", 
        "978-3-319-02630-5"
      ], 
      "name": "Memristor Networks", 
      "type": "Book"
    }, 
    "keywords": [
      "inhibitory synapses", 
      "visual cortex", 
      "action potential spikes", 
      "synaptic update rule", 
      "neurons", 
      "Dependent-Plasticity", 
      "synapses", 
      "cortex layer", 
      "real biological synapses", 
      "excitatory", 
      "possible development", 
      "cortex", 
      "retina", 
      "Spike-Time", 
      "exciting overlap", 
      "spikes", 
      "available memristors", 
      "aim", 
      "potential spike", 
      "types", 
      "STDP", 
      "action", 
      "manner", 
      "neuroscience", 
      "neuromorphic engineers", 
      "STDP learning rule", 
      "critical aspects", 
      "data", 
      "development", 
      "overlap", 
      "results", 
      "limitations", 
      "aspects", 
      "initial framework", 
      "part", 
      "technology devices", 
      "link", 
      "devices", 
      "three-terminal transistor", 
      "discussion", 
      "model", 
      "learning rule", 
      "system", 
      "behavior", 
      "life scenes", 
      "implementation", 
      "real life scenes", 
      "types of memristors", 
      "account", 
      "such devices", 
      "shape", 
      "layer", 
      "type devices", 
      "orientation", 
      "technology", 
      "rules", 
      "biological synapses", 
      "visual data", 
      "circuit architecture", 
      "architecture", 
      "scene", 
      "flux", 
      "tutorial manner", 
      "specific shape", 
      "framework", 
      "nano technology", 
      "voltage", 
      "learning system", 
      "neuromorphic architectures", 
      "behavioral simulations", 
      "simulations", 
      "engineers", 
      "CMOS", 
      "memristor", 
      "asynchronous architecture", 
      "update rule", 
      "macro model", 
      "memristive behavior", 
      "transistors", 
      "interconnects", 
      "emergent nano technology", 
      "memristor nano technology devices", 
      "nano technology devices", 
      "biological synaptic update rule", 
      "behavioral macro models", 
      "neuron action potential spikes", 
      "large scale spiking learning systems", 
      "scale spiking learning systems", 
      "spiking learning systems", 
      "multiplicative STDP learning rule", 
      "similar memristive behavior", 
      "V1 visual cortex layer", 
      "visual cortex layer", 
      "real artificial CMOS", 
      "artificial CMOS", 
      "asynchronous STDP", 
      "terminal memristive type devices", 
      "memristive type devices"
    ], 
    "name": "Spike-Timing-Dependent-Plasticity with Memristors", 
    "pagination": "211-247", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033460555"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-02630-5_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-02630-5_11", 
      "https://app.dimensions.ai/details/publication/pub.1033460555"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_63.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-02630-5_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02630-5_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02630-5_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02630-5_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02630-5_11'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      23 PREDICATES      124 URIs      117 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-02630-5_11 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N0366a7c68c9e4f84a7f48fcbecfc5077
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description Abstract(This chapter is reprints material from Zamarreño-Ramos et al. in Front. Neurosci. 5:26, 2011 and Serrano-Gotarredona et al. in Front. Neurosci. 7:02, 2013, with permission.) Here we present a very exciting overlap between emergent nano technology and neuroscience, which has been discovered by neuromorphic engineers. Specifically, we are linking one type of memristor nano technology devices to the biological synaptic update rule known as Spike-Time-Dependent-Plasticity found in real biological synapses. Understanding this link allows neuromorphic engineers to develop circuit architectures that use this type of memristors to artificially emulate parts of the visual cortex. We focus on the type of memristors referred to as voltage or flux driven memristors and focus our discussions on behavioral macro models for such devices. The implementations result in fully asynchronous architectures with neurons sending their action potentials not only forwards but also backwards. One critical aspect is to use neurons that generate spikes of specific shapes. We will see how by changing the shapes of the neuron action potential spikes we can tune and manipulate the STDP learning rules for both excitatory and inhibitory synapses. We will see how neurons and memristors can be interconnected to achieve large scale spiking learning systems, that follow a type of multiplicative STDP learning rule. We will briefly extend the architectures to use three-terminal transistors with similar memristive behavior. We will illustrate how a V1 visual cortex layer can be assembled and how it is capable of learning to extract orientations from visual data coming from a real artificial CMOS spiking retina observing real life scenes. Finally, we will discuss limitations of currently available memristors. The results presented are based on behavioral simulations and do not take into account non-idealities of devices and interconnects. The aim here is to present, in a tutorial manner, an initial framework for the possible development of fully asynchronous STDP learning neuromorphic architectures exploiting two or three terminal memristive type devices. (A Supplemental Material compressed zip file containing all files used for the simulations can be downloaded from http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2011.00026/abstract.)
7 schema:editor N172350f3fffe46118511f7aae935f8aa
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Ne3a9567533d14480b1cd11826aacbeae
12 schema:keywords CMOS
13 Dependent-Plasticity
14 STDP
15 STDP learning rule
16 Spike-Time
17 V1 visual cortex layer
18 account
19 action
20 action potential spikes
21 aim
22 architecture
23 artificial CMOS
24 aspects
25 asynchronous STDP
26 asynchronous architecture
27 available memristors
28 behavior
29 behavioral macro models
30 behavioral simulations
31 biological synapses
32 biological synaptic update rule
33 circuit architecture
34 cortex
35 cortex layer
36 critical aspects
37 data
38 development
39 devices
40 discussion
41 emergent nano technology
42 engineers
43 excitatory
44 exciting overlap
45 flux
46 framework
47 implementation
48 inhibitory synapses
49 initial framework
50 interconnects
51 large scale spiking learning systems
52 layer
53 learning rule
54 learning system
55 life scenes
56 limitations
57 link
58 macro model
59 manner
60 memristive behavior
61 memristive type devices
62 memristor
63 memristor nano technology devices
64 model
65 multiplicative STDP learning rule
66 nano technology
67 nano technology devices
68 neuromorphic architectures
69 neuromorphic engineers
70 neuron action potential spikes
71 neurons
72 neuroscience
73 orientation
74 overlap
75 part
76 possible development
77 potential spike
78 real artificial CMOS
79 real biological synapses
80 real life scenes
81 results
82 retina
83 rules
84 scale spiking learning systems
85 scene
86 shape
87 similar memristive behavior
88 simulations
89 specific shape
90 spikes
91 spiking learning systems
92 such devices
93 synapses
94 synaptic update rule
95 system
96 technology
97 technology devices
98 terminal memristive type devices
99 three-terminal transistor
100 transistors
101 tutorial manner
102 type devices
103 types
104 types of memristors
105 update rule
106 visual cortex
107 visual cortex layer
108 visual data
109 voltage
110 schema:name Spike-Timing-Dependent-Plasticity with Memristors
111 schema:pagination 211-247
112 schema:productId N2a230a628a1d4f0d907d4c726edce581
113 Nf08d38a01c814e4fb4c91f91f4fbebdc
114 schema:publisher N56652301494c472ab6b31285677b0d42
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033460555
116 https://doi.org/10.1007/978-3-319-02630-5_11
117 schema:sdDatePublished 2022-01-01T19:27
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher N19b94f9923a244c897ab2864db848898
120 schema:url https://doi.org/10.1007/978-3-319-02630-5_11
121 sgo:license sg:explorer/license/
122 sgo:sdDataset chapters
123 rdf:type schema:Chapter
124 N0366a7c68c9e4f84a7f48fcbecfc5077 rdf:first sg:person.0775210664.28
125 rdf:rest Na9fcda98bff745cd8e353d96a3370c6b
126 N172350f3fffe46118511f7aae935f8aa rdf:first Ne9c6643856b845bd9fcc2d4878b7d67b
127 rdf:rest N46a383f944d640ce995bf3034021cdf9
128 N19b94f9923a244c897ab2864db848898 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 N29433070021a4434a782778aa09dc1af rdf:first sg:person.01111437264.42
131 rdf:rest rdf:nil
132 N2a230a628a1d4f0d907d4c726edce581 schema:name dimensions_id
133 schema:value pub.1033460555
134 rdf:type schema:PropertyValue
135 N46a383f944d640ce995bf3034021cdf9 rdf:first N63b58eeb9b2c4bbe8c1be371ac0be7ff
136 rdf:rest rdf:nil
137 N56652301494c472ab6b31285677b0d42 schema:name Springer Nature
138 rdf:type schema:Organisation
139 N63b58eeb9b2c4bbe8c1be371ac0be7ff schema:familyName Chua
140 schema:givenName Leon
141 rdf:type schema:Person
142 Na9fcda98bff745cd8e353d96a3370c6b rdf:first sg:person.01271016666.11
143 rdf:rest N29433070021a4434a782778aa09dc1af
144 Ne3a9567533d14480b1cd11826aacbeae schema:isbn 978-3-319-02629-9
145 978-3-319-02630-5
146 schema:name Memristor Networks
147 rdf:type schema:Book
148 Ne9c6643856b845bd9fcc2d4878b7d67b schema:familyName Adamatzky
149 schema:givenName Andrew
150 rdf:type schema:Person
151 Nf08d38a01c814e4fb4c91f91f4fbebdc schema:name doi
152 schema:value 10.1007/978-3-319-02630-5_11
153 rdf:type schema:PropertyValue
154 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
155 schema:name Medical and Health Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
158 schema:name Neurosciences
159 rdf:type schema:DefinedTerm
160 sg:person.01111437264.42 schema:affiliation grid-institutes:grid.507649.9
161 schema:familyName Linares-Barranco
162 schema:givenName B.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111437264.42
164 rdf:type schema:Person
165 sg:person.01271016666.11 schema:affiliation grid-institutes:grid.462844.8
166 schema:familyName Masquelier
167 schema:givenName T.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01271016666.11
169 rdf:type schema:Person
170 sg:person.0775210664.28 schema:affiliation grid-institutes:grid.507649.9
171 schema:familyName Serrano-Gotarredona
172 schema:givenName T.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775210664.28
174 rdf:type schema:Person
175 grid-institutes:grid.462844.8 schema:alternateName Laboratory of Neurobiology and Adaptive Processses, University Pierre et Marie Curie, 9 quai St. Bernard, 75005, Paris, France
176 schema:name Laboratory of Neurobiology and Adaptive Processses, University Pierre et Marie Curie, 9 quai St. Bernard, 75005, Paris, France
177 rdf:type schema:Organization
178 grid-institutes:grid.507649.9 schema:alternateName Instituto de Microelectronica de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain
179 schema:name Instituto de Microelectronica de Sevilla, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Avda. Americo Vespucio s/n, 41092, Sevilla, Spain
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...