Pedestrian Group Behavior in a Cellular Automaton View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013-12-06

AUTHORS

Michael Seitz , Gerta Köster , Alexander Pfaffinger

ABSTRACT

The study of crowd movement is very important for planning mass events and evacuations. Although many potentially critical incidents are hardly predictable, others like clogging, can be anticipated. Studies have shown that pedestrians in social groups frequently contribute the biggest part to crowds, and that these groups have a significant impact on crowd movement. Furthermore social cooperative behaviour does not stop in emergency situations, but continues or even gets stronger. We employ a cellular automaton with attractive and repulsive potentials for the simulation of individual pedestrians. Then we explain how to integrate a concise model for social groups suitable for the basic modelling techniques. Further aspects of group behavior are discussed, namely large groups and the behavior after a group separation, and we propose a model for these. These investigations lead us to the conclusion that there is a growing need of agent based modelling when facing advanced aspects of pedestrian crowd behavior. More... »

PAGES

807-814

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-02447-9_67

DOI

http://dx.doi.org/10.1007/978-3-319-02447-9_67

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045857640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ludwig-Maximilians-Universit\u00e4t, Geschwister-Scholl-Platz 1, 80539, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "University of Applied Sciences, Lothstra\u00dfe 64, 80335, Munich, Germany", 
            "Ludwig-Maximilians-Universit\u00e4t, Geschwister-Scholl-Platz 1, 80539, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seitz", 
        "givenName": "Michael", 
        "id": "sg:person.013540646657.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540646657.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Applied Sciences, Lothstra\u00dfe 64, 80335, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "University of Applied Sciences, Lothstra\u00dfe 64, 80335, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00f6ster", 
        "givenName": "Gerta", 
        "id": "sg:person.013373331163.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373331163.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siemens AG Corporate Technology, 81739, Munich, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5406.7", 
          "name": [
            "Siemens AG Corporate Technology, 81739, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfaffinger", 
        "givenName": "Alexander", 
        "id": "sg:person.015304400241.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304400241.02"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013-12-06", 
    "datePublishedReg": "2013-12-06", 
    "description": "The study of crowd movement is very important for planning mass events and evacuations. Although many potentially critical incidents are hardly predictable, others like clogging, can be anticipated. Studies have shown that pedestrians in social groups frequently contribute the biggest part to crowds, and that these groups have a significant impact on crowd movement. Furthermore social cooperative behaviour does not stop in emergency situations, but continues or even gets stronger. We employ a cellular automaton with attractive and repulsive potentials for the simulation of individual pedestrians. Then we explain how to integrate a concise model for social groups suitable for the basic modelling techniques. Further aspects of group behavior are discussed, namely large groups and the behavior after a group separation, and we propose a model for these. These investigations lead us to the conclusion that there is a growing need of agent based modelling when facing advanced aspects of pedestrian crowd behavior.", 
    "editor": [
      {
        "familyName": "Weidmann", 
        "givenName": "Ulrich", 
        "type": "Person"
      }, 
      {
        "familyName": "Kirsch", 
        "givenName": "Uwe", 
        "type": "Person"
      }, 
      {
        "familyName": "Schreckenberg", 
        "givenName": "Michael", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-02447-9_67", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-02446-2", 
        "978-3-319-02447-9"
      ], 
      "name": "Pedestrian and Evacuation Dynamics 2012", 
      "type": "Book"
    }, 
    "keywords": [
      "need of agents", 
      "crowd movement", 
      "group behavior", 
      "crowd behavior", 
      "basic modelling techniques", 
      "cellular automata", 
      "individual pedestrians", 
      "mass events", 
      "concise model", 
      "emergency situations", 
      "pedestrian crowd behaviors", 
      "modelling techniques", 
      "advanced aspects", 
      "automata", 
      "cooperative behavior", 
      "pedestrians", 
      "social cooperative behavior", 
      "big part", 
      "crowd", 
      "model", 
      "simulations", 
      "technique", 
      "aspects", 
      "modelling", 
      "situation", 
      "significant impact", 
      "need", 
      "movement", 
      "further aspects", 
      "behavior", 
      "critical incidents", 
      "large group", 
      "evacuation", 
      "part", 
      "incidents", 
      "social groups", 
      "agents", 
      "events", 
      "impact", 
      "potential", 
      "study", 
      "repulsive potential", 
      "separation", 
      "group", 
      "group separation", 
      "investigation", 
      "conclusion", 
      "Pedestrian Group Behavior"
    ], 
    "name": "Pedestrian Group Behavior in a Cellular Automaton", 
    "pagination": "807-814", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045857640"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-02447-9_67"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-02447-9_67", 
      "https://app.dimensions.ai/details/publication/pub.1045857640"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_431.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-02447-9_67"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02447-9_67'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02447-9_67'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02447-9_67'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-02447-9_67'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      23 PREDICATES      73 URIs      66 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-02447-9_67 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N00bb35984fe649c69b987ef080d1f127
4 schema:datePublished 2013-12-06
5 schema:datePublishedReg 2013-12-06
6 schema:description The study of crowd movement is very important for planning mass events and evacuations. Although many potentially critical incidents are hardly predictable, others like clogging, can be anticipated. Studies have shown that pedestrians in social groups frequently contribute the biggest part to crowds, and that these groups have a significant impact on crowd movement. Furthermore social cooperative behaviour does not stop in emergency situations, but continues or even gets stronger. We employ a cellular automaton with attractive and repulsive potentials for the simulation of individual pedestrians. Then we explain how to integrate a concise model for social groups suitable for the basic modelling techniques. Further aspects of group behavior are discussed, namely large groups and the behavior after a group separation, and we propose a model for these. These investigations lead us to the conclusion that there is a growing need of agent based modelling when facing advanced aspects of pedestrian crowd behavior.
7 schema:editor N1a7a652be57e4fb2ac2e4b89ff6d0802
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N8302471f1c684b7f838361afa0ffaa38
12 schema:keywords Pedestrian Group Behavior
13 advanced aspects
14 agents
15 aspects
16 automata
17 basic modelling techniques
18 behavior
19 big part
20 cellular automata
21 concise model
22 conclusion
23 cooperative behavior
24 critical incidents
25 crowd
26 crowd behavior
27 crowd movement
28 emergency situations
29 evacuation
30 events
31 further aspects
32 group
33 group behavior
34 group separation
35 impact
36 incidents
37 individual pedestrians
38 investigation
39 large group
40 mass events
41 model
42 modelling
43 modelling techniques
44 movement
45 need
46 need of agents
47 part
48 pedestrian crowd behaviors
49 pedestrians
50 potential
51 repulsive potential
52 separation
53 significant impact
54 simulations
55 situation
56 social cooperative behavior
57 social groups
58 study
59 technique
60 schema:name Pedestrian Group Behavior in a Cellular Automaton
61 schema:pagination 807-814
62 schema:productId N3b05f8a4349f4c3f9e0b34fa358d8b5a
63 Nfd428945268a4718a0ef7f774f50f92b
64 schema:publisher N49b98d7cad304743846ef6fad64a18d3
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045857640
66 https://doi.org/10.1007/978-3-319-02447-9_67
67 schema:sdDatePublished 2021-12-01T20:10
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N1a81c19a236f49e5ad0388683f302e66
70 schema:url https://doi.org/10.1007/978-3-319-02447-9_67
71 sgo:license sg:explorer/license/
72 sgo:sdDataset chapters
73 rdf:type schema:Chapter
74 N00bb35984fe649c69b987ef080d1f127 rdf:first sg:person.013540646657.07
75 rdf:rest N0afb24eae25e4d06b3cc1656c4d9eb5e
76 N0afb24eae25e4d06b3cc1656c4d9eb5e rdf:first sg:person.013373331163.32
77 rdf:rest N52b61236304d440eb581b56928631b24
78 N173d617781784bbdb82165520c763606 rdf:first Nd9020f0473fa4fadba7e9d6720eb6e20
79 rdf:rest rdf:nil
80 N1a7a652be57e4fb2ac2e4b89ff6d0802 rdf:first N25338b1e35c74ea99dce7afe120c73bf
81 rdf:rest Nfb44cd03b0404236a93ce16dfa42b8e9
82 N1a81c19a236f49e5ad0388683f302e66 schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N25338b1e35c74ea99dce7afe120c73bf schema:familyName Weidmann
85 schema:givenName Ulrich
86 rdf:type schema:Person
87 N3b05f8a4349f4c3f9e0b34fa358d8b5a schema:name doi
88 schema:value 10.1007/978-3-319-02447-9_67
89 rdf:type schema:PropertyValue
90 N49b98d7cad304743846ef6fad64a18d3 schema:name Springer Nature
91 rdf:type schema:Organisation
92 N52b61236304d440eb581b56928631b24 rdf:first sg:person.015304400241.02
93 rdf:rest rdf:nil
94 N8302471f1c684b7f838361afa0ffaa38 schema:isbn 978-3-319-02446-2
95 978-3-319-02447-9
96 schema:name Pedestrian and Evacuation Dynamics 2012
97 rdf:type schema:Book
98 Nd9020f0473fa4fadba7e9d6720eb6e20 schema:familyName Schreckenberg
99 schema:givenName Michael
100 rdf:type schema:Person
101 Neef6736b1c0646079ba977f450e6e3b0 schema:familyName Kirsch
102 schema:givenName Uwe
103 rdf:type schema:Person
104 Nfb44cd03b0404236a93ce16dfa42b8e9 rdf:first Neef6736b1c0646079ba977f450e6e3b0
105 rdf:rest N173d617781784bbdb82165520c763606
106 Nfd428945268a4718a0ef7f774f50f92b schema:name dimensions_id
107 schema:value pub.1045857640
108 rdf:type schema:PropertyValue
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
113 schema:name Artificial Intelligence and Image Processing
114 rdf:type schema:DefinedTerm
115 sg:person.013373331163.32 schema:affiliation grid-institutes:None
116 schema:familyName Köster
117 schema:givenName Gerta
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013373331163.32
119 rdf:type schema:Person
120 sg:person.013540646657.07 schema:affiliation grid-institutes:grid.5252.0
121 schema:familyName Seitz
122 schema:givenName Michael
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013540646657.07
124 rdf:type schema:Person
125 sg:person.015304400241.02 schema:affiliation grid-institutes:grid.5406.7
126 schema:familyName Pfaffinger
127 schema:givenName Alexander
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304400241.02
129 rdf:type schema:Person
130 grid-institutes:None schema:alternateName University of Applied Sciences, Lothstraße 64, 80335, Munich, Germany
131 schema:name University of Applied Sciences, Lothstraße 64, 80335, Munich, Germany
132 rdf:type schema:Organization
133 grid-institutes:grid.5252.0 schema:alternateName Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
134 schema:name Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
135 University of Applied Sciences, Lothstraße 64, 80335, Munich, Germany
136 rdf:type schema:Organization
137 grid-institutes:grid.5406.7 schema:alternateName Siemens AG Corporate Technology, 81739, Munich, Germany
138 schema:name Siemens AG Corporate Technology, 81739, Munich, Germany
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...