DNA Walker Circuits: Computational Potential, Design, and Verification View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2013

AUTHORS

Frits Dannenberg , Marta Kwiatkowska , Chris Thachuk , Andrew J. Turberfield

ABSTRACT

Unlike their traditional, silicon counterparts, DNA computers have natural interfaces with both chemical and biological systems. These can be used for a number of applications, including the precise arrangement of matter at the nanoscale and the creation of smart biosensors. Like silicon circuits, DNA strand displacement systems (DSD) can evaluate non-trivial functions. However, these systems can be slow and are susceptible to errors. It has been suggested that localised hybridization reactions could overcome some of these challenges. Localised reactions occur in DNA ‘walker’ systems which were recently shown to be capable of navigating a programmable track tethered to an origami tile. We investigate the computational potential of these systems for evaluating Boolean functions. DNA walkers, like DSDs, are also susceptible to errors. We develop a discrete stochastic model of DNA walker ‘circuits’ based on experimental data, and demonstrate the merit of using probabilistic model checking techniques to analyse their reliability, performance and correctness. More... »

PAGES

31-45

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-01928-4_3

DOI

http://dx.doi.org/10.1007/978-3-319-01928-4_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023028484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dannenberg", 
        "givenName": "Frits", 
        "id": "sg:person.010040156213.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010040156213.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwiatkowska", 
        "givenName": "Marta", 
        "id": "sg:person.011375012273.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375012273.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thachuk", 
        "givenName": "Chris", 
        "id": "sg:person.01122734315.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122734315.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turberfield", 
        "givenName": "Andrew J.", 
        "id": "sg:person.0643056543.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643056543.15"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "Unlike their traditional, silicon counterparts, DNA computers have natural interfaces with both chemical and biological systems. These can be used for a number of applications, including the precise arrangement of matter at the nanoscale and the creation of smart biosensors. Like silicon circuits, DNA strand displacement systems (DSD) can evaluate non-trivial functions. However, these systems can be slow and are susceptible to errors. It has been suggested that localised hybridization reactions could overcome some of these challenges. Localised reactions occur in DNA \u2018walker\u2019 systems which were recently shown to be capable of navigating a programmable track tethered to an origami tile. We investigate the computational potential of these systems for evaluating Boolean functions. DNA walkers, like DSDs, are also susceptible to errors. We develop a discrete stochastic model of DNA walker \u2018circuits\u2019 based on experimental data, and demonstrate the merit of using probabilistic model checking techniques to analyse their reliability, performance and correctness.", 
    "editor": [
      {
        "familyName": "Soloveichik", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Yurke", 
        "givenName": "Bernard", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-01928-4_3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-01927-7", 
        "978-3-319-01928-4"
      ], 
      "name": "DNA Computing and Molecular Programming", 
      "type": "Book"
    }, 
    "keywords": [
      "DNA strand displacement systems", 
      "computational potential", 
      "natural interface", 
      "DNA computer", 
      "number of applications", 
      "strand displacement systems", 
      "probabilistic model", 
      "non-trivial function", 
      "Boolean functions", 
      "system", 
      "discrete stochastic model", 
      "computer", 
      "smart biosensors", 
      "correctness", 
      "error", 
      "verification", 
      "interface", 
      "applications", 
      "performance", 
      "model", 
      "silicon circuits", 
      "creation", 
      "stochastic model", 
      "reliability", 
      "challenges", 
      "displacement system", 
      "tiles", 
      "design", 
      "track", 
      "technique", 
      "biological systems", 
      "Walker", 
      "circuit", 
      "DNA walker", 
      "merits", 
      "origami tiles", 
      "data", 
      "number", 
      "function", 
      "counterparts", 
      "potential", 
      "experimental data", 
      "arrangement", 
      "precise arrangement", 
      "matter", 
      "silicon counterparts", 
      "hybridization reaction", 
      "biosensor", 
      "nanoscale", 
      "reaction", 
      "DNA", 
      "programmable track"
    ], 
    "name": "DNA Walker Circuits: Computational Potential, Design, and Verification", 
    "pagination": "31-45", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023028484"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-01928-4_3"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-01928-4_3", 
      "https://app.dimensions.ai/details/publication/pub.1023028484"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_436.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-01928-4_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01928-4_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01928-4_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01928-4_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01928-4_3'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      78 URIs      71 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-01928-4_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6cd4f85c5d7948469ccc1c31f583ad23
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description Unlike their traditional, silicon counterparts, DNA computers have natural interfaces with both chemical and biological systems. These can be used for a number of applications, including the precise arrangement of matter at the nanoscale and the creation of smart biosensors. Like silicon circuits, DNA strand displacement systems (DSD) can evaluate non-trivial functions. However, these systems can be slow and are susceptible to errors. It has been suggested that localised hybridization reactions could overcome some of these challenges. Localised reactions occur in DNA ‘walker’ systems which were recently shown to be capable of navigating a programmable track tethered to an origami tile. We investigate the computational potential of these systems for evaluating Boolean functions. DNA walkers, like DSDs, are also susceptible to errors. We develop a discrete stochastic model of DNA walker ‘circuits’ based on experimental data, and demonstrate the merit of using probabilistic model checking techniques to analyse their reliability, performance and correctness.
7 schema:editor Ncece76cc87974091b2aef370efa24523
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Na4c6cc844cf7471991e28fc34db32e36
12 schema:keywords Boolean functions
13 DNA
14 DNA computer
15 DNA strand displacement systems
16 DNA walker
17 Walker
18 applications
19 arrangement
20 biological systems
21 biosensor
22 challenges
23 circuit
24 computational potential
25 computer
26 correctness
27 counterparts
28 creation
29 data
30 design
31 discrete stochastic model
32 displacement system
33 error
34 experimental data
35 function
36 hybridization reaction
37 interface
38 matter
39 merits
40 model
41 nanoscale
42 natural interface
43 non-trivial function
44 number
45 number of applications
46 origami tiles
47 performance
48 potential
49 precise arrangement
50 probabilistic model
51 programmable track
52 reaction
53 reliability
54 silicon circuits
55 silicon counterparts
56 smart biosensors
57 stochastic model
58 strand displacement systems
59 system
60 technique
61 tiles
62 track
63 verification
64 schema:name DNA Walker Circuits: Computational Potential, Design, and Verification
65 schema:pagination 31-45
66 schema:productId N066b5cd7380941be855b081acdd3ef32
67 Nafaef197c26644548aa4ad52d39e4985
68 schema:publisher N5a92d41b1ee84694ac6b6931738be0ef
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023028484
70 https://doi.org/10.1007/978-3-319-01928-4_3
71 schema:sdDatePublished 2021-12-01T20:10
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Nd0ac0c775d3c41ffb5542d41c46dcf10
74 schema:url https://doi.org/10.1007/978-3-319-01928-4_3
75 sgo:license sg:explorer/license/
76 sgo:sdDataset chapters
77 rdf:type schema:Chapter
78 N066b5cd7380941be855b081acdd3ef32 schema:name doi
79 schema:value 10.1007/978-3-319-01928-4_3
80 rdf:type schema:PropertyValue
81 N311102d09e2a44fd8d17098d79a89ec6 schema:familyName Soloveichik
82 schema:givenName David
83 rdf:type schema:Person
84 N3e95bde1fdb74c0ea259b0e09cac7b25 rdf:first sg:person.011375012273.39
85 rdf:rest N8bd47a2ab428411da095d56c34d48936
86 N5a92d41b1ee84694ac6b6931738be0ef schema:name Springer Nature
87 rdf:type schema:Organisation
88 N6cd4f85c5d7948469ccc1c31f583ad23 rdf:first sg:person.010040156213.45
89 rdf:rest N3e95bde1fdb74c0ea259b0e09cac7b25
90 N879f1d9a3daa4bc18f92b5d25e59acb7 rdf:first Nd5870cabec8e40d2ada4d94b2335c900
91 rdf:rest rdf:nil
92 N8bd47a2ab428411da095d56c34d48936 rdf:first sg:person.01122734315.29
93 rdf:rest Nd70a4f6333f44100bb94c6cff59e49bc
94 Na4c6cc844cf7471991e28fc34db32e36 schema:isbn 978-3-319-01927-7
95 978-3-319-01928-4
96 schema:name DNA Computing and Molecular Programming
97 rdf:type schema:Book
98 Nafaef197c26644548aa4ad52d39e4985 schema:name dimensions_id
99 schema:value pub.1023028484
100 rdf:type schema:PropertyValue
101 Ncece76cc87974091b2aef370efa24523 rdf:first N311102d09e2a44fd8d17098d79a89ec6
102 rdf:rest N879f1d9a3daa4bc18f92b5d25e59acb7
103 Nd0ac0c775d3c41ffb5542d41c46dcf10 schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nd5870cabec8e40d2ada4d94b2335c900 schema:familyName Yurke
106 schema:givenName Bernard
107 rdf:type schema:Person
108 Nd70a4f6333f44100bb94c6cff59e49bc rdf:first sg:person.0643056543.15
109 rdf:rest rdf:nil
110 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
111 schema:name Information and Computing Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
114 schema:name Artificial Intelligence and Image Processing
115 rdf:type schema:DefinedTerm
116 sg:person.010040156213.45 schema:affiliation grid-institutes:grid.4991.5
117 schema:familyName Dannenberg
118 schema:givenName Frits
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010040156213.45
120 rdf:type schema:Person
121 sg:person.01122734315.29 schema:affiliation grid-institutes:grid.4991.5
122 schema:familyName Thachuk
123 schema:givenName Chris
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122734315.29
125 rdf:type schema:Person
126 sg:person.011375012273.39 schema:affiliation grid-institutes:grid.4991.5
127 schema:familyName Kwiatkowska
128 schema:givenName Marta
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011375012273.39
130 rdf:type schema:Person
131 sg:person.0643056543.15 schema:affiliation grid-institutes:grid.4991.5
132 schema:familyName Turberfield
133 schema:givenName Andrew J.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643056543.15
135 rdf:type schema:Person
136 grid-institutes:grid.4991.5 schema:alternateName Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK
137 Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
138 schema:name Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, OX1 3QD, Oxford, UK
139 Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, UK
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...