Summary and Conclusions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Pablo Burset Atienza

ABSTRACT

This thesis describes the study of the superconducting proximity effect in graphene and of nonlocal transport in carbon based materials with reduced dimensionality. We presented a theoretical analysis of the proximity effect in a graphene-superconductor junction which allows to take into account the description of the interface at the microscopic level. We predicted the behavior of the local density of states of a graphene layer in contact with a superconducting electrode. Additionally, we were able to demonstrate the appearance of bound states associated to the graphene-superconductor interface for energies below the superconducting gap. We have proposed and, subsequently analyzed the possibility of focusing beams of electrons and holes in separated spatial regions on a graphene-superconductor-graphene junction. Finally, we investigated the crossed Andreev reflections that occur in carbon nanotubes coupled with superconducting electrodes. A list of the publications that resulted from this work is given in Appendix F. We now provide the details of each Chapter. More... »

PAGES

115-117

Book

TITLE

Superconductivity in Graphene and Carbon Nanotubes

ISBN

978-3-319-01109-7
978-3-319-01110-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_7

DOI

http://dx.doi.org/10.1007/978-3-319-01110-3_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049046758


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of W\u00fcrzburg", 
          "id": "https://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institute for Theoretical Physics and Astrophysics, University of W\u00fcrzburg, Am Hubland, 97074\u00a0W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atienza", 
        "givenName": "Pablo Burset", 
        "id": "sg:person.012446627203.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012446627203.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.83.195434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018601842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.195434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018601842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.115448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021671330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.115448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021671330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.205425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030742716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.205425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030742716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.041402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034361392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.041402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034361392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.115411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041986986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.115411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041986986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2011.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047514928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052574862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.136801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052574862"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "This thesis describes the study of the superconducting proximity effect in graphene and of nonlocal transport in carbon based materials with reduced dimensionality. We presented a theoretical analysis of the proximity effect in a graphene-superconductor junction which allows to take into account the description of the interface at the microscopic level. We predicted the behavior of the local density of states of a graphene layer in contact with a superconducting electrode. Additionally, we were able to demonstrate the appearance of bound states associated to the graphene-superconductor interface for energies below the superconducting gap. We have proposed and, subsequently analyzed the possibility of focusing beams of electrons and holes in separated spatial regions on a graphene-superconductor-graphene junction. Finally, we investigated the crossed Andreev reflections that occur in carbon nanotubes coupled with superconducting electrodes. A list of the publications that resulted from this work is given in Appendix\u00a0F. We now provide the details of each Chapter.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-01110-3_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-01109-7", 
        "978-3-319-01110-3"
      ], 
      "name": "Superconductivity in Graphene and Carbon Nanotubes", 
      "type": "Book"
    }, 
    "name": "Summary and Conclusions", 
    "pagination": "115-117", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-01110-3_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e9a674404c308d2b874a1cd07e0cea6df59dc251e634ec0df3b71c7c7304b1f2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049046758"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-01110-3_7", 
      "https://app.dimensions.ai/details/publication/pub.1049046758"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000273.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-01110-3_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_7'


 

This table displays all metadata directly associated to this object as RDF triples.

80 TRIPLES      22 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-01110-3_7 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Na42dae94467244ea972b7f4f45911ab1
4 schema:citation https://doi.org/10.1016/j.physrep.2011.02.002
5 https://doi.org/10.1103/physrevb.77.205425
6 https://doi.org/10.1103/physrevb.80.041402
7 https://doi.org/10.1103/physrevb.83.195434
8 https://doi.org/10.1103/physrevb.84.115448
9 https://doi.org/10.1103/physrevb.85.115411
10 https://doi.org/10.1103/physrevlett.107.136801
11 schema:datePublished 2014
12 schema:datePublishedReg 2014-01-01
13 schema:description This thesis describes the study of the superconducting proximity effect in graphene and of nonlocal transport in carbon based materials with reduced dimensionality. We presented a theoretical analysis of the proximity effect in a graphene-superconductor junction which allows to take into account the description of the interface at the microscopic level. We predicted the behavior of the local density of states of a graphene layer in contact with a superconducting electrode. Additionally, we were able to demonstrate the appearance of bound states associated to the graphene-superconductor interface for energies below the superconducting gap. We have proposed and, subsequently analyzed the possibility of focusing beams of electrons and holes in separated spatial regions on a graphene-superconductor-graphene junction. Finally, we investigated the crossed Andreev reflections that occur in carbon nanotubes coupled with superconducting electrodes. A list of the publications that resulted from this work is given in Appendix F. We now provide the details of each Chapter.
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N9daf5006351d45e6914685817208472d
18 schema:name Summary and Conclusions
19 schema:pagination 115-117
20 schema:productId N13103c6901f04e32b696889e849f4e0e
21 N9200c24007f0445b9a0b70dca69dfe44
22 N9cf2e5773e6c49e290a614294237950b
23 schema:publisher N9b6d93561c2e4e0ab763e444980f175c
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049046758
25 https://doi.org/10.1007/978-3-319-01110-3_7
26 schema:sdDatePublished 2019-04-15T22:01
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N6314d669d2404e7a83e4c66a2bab660f
29 schema:url http://link.springer.com/10.1007/978-3-319-01110-3_7
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N13103c6901f04e32b696889e849f4e0e schema:name doi
34 schema:value 10.1007/978-3-319-01110-3_7
35 rdf:type schema:PropertyValue
36 N6314d669d2404e7a83e4c66a2bab660f schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N9200c24007f0445b9a0b70dca69dfe44 schema:name readcube_id
39 schema:value e9a674404c308d2b874a1cd07e0cea6df59dc251e634ec0df3b71c7c7304b1f2
40 rdf:type schema:PropertyValue
41 N9b6d93561c2e4e0ab763e444980f175c schema:location Cham
42 schema:name Springer International Publishing
43 rdf:type schema:Organisation
44 N9cf2e5773e6c49e290a614294237950b schema:name dimensions_id
45 schema:value pub.1049046758
46 rdf:type schema:PropertyValue
47 N9daf5006351d45e6914685817208472d schema:isbn 978-3-319-01109-7
48 978-3-319-01110-3
49 schema:name Superconductivity in Graphene and Carbon Nanotubes
50 rdf:type schema:Book
51 Na42dae94467244ea972b7f4f45911ab1 rdf:first sg:person.012446627203.55
52 rdf:rest rdf:nil
53 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
54 schema:name Physical Sciences
55 rdf:type schema:DefinedTerm
56 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
57 schema:name Condensed Matter Physics
58 rdf:type schema:DefinedTerm
59 sg:person.012446627203.55 schema:affiliation https://www.grid.ac/institutes/grid.8379.5
60 schema:familyName Atienza
61 schema:givenName Pablo Burset
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012446627203.55
63 rdf:type schema:Person
64 https://doi.org/10.1016/j.physrep.2011.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047514928
65 rdf:type schema:CreativeWork
66 https://doi.org/10.1103/physrevb.77.205425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030742716
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1103/physrevb.80.041402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034361392
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1103/physrevb.83.195434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018601842
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1103/physrevb.84.115448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021671330
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1103/physrevb.85.115411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041986986
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1103/physrevlett.107.136801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052574862
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.8379.5 schema:alternateName University of Würzburg
79 schema:name Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
80 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...