Green Functions Techniques for Graphene Layers with Edges View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2014

AUTHORS

Pablo Burset Atienza

ABSTRACT

The basic properties of Green functions are described in Appendix A. In this chapter we extend several Green function techniques to the case of carbon based nanostructures. The case of graphene is of particular interest since the results obtained for graphene layers can be applied to carbon nanotubes by introducing the appropriate boundary conditions. On the one hand, we are interested in a microscopic description of the edges of the graphene layers. A good description of the armchair and zigzag edges of a graphene layer is of fundamental importance to describe the interface with another system at a microscopic level. On the other hand, the Green function techniques must be adapted to include superconducting correlations on the graphene layer. More... »

PAGES

31-50

Book

TITLE

Superconductivity in Graphene and Carbon Nanotubes

ISBN

978-3-319-01109-7
978-3-319-01110-3

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_3

DOI

http://dx.doi.org/10.1007/978-3-319-01110-3_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035415480


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of W\u00fcrzburg", 
          "id": "https://www.grid.ac/institutes/grid.8379.5", 
          "name": [
            "Institute for Theoretical Physics and Astrophysics, University of W\u00fcrzburg, Am Hubland, 97074\u00a0W\u00fcrzburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Atienza", 
        "givenName": "Pablo Burset", 
        "id": "sg:person.012446627203.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012446627203.55"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The basic properties of Green functions are described in Appendix A. In this chapter we extend several Green function techniques to the case of carbon based nanostructures. The case of graphene is of particular interest since the results obtained for graphene layers can be applied to carbon nanotubes by introducing the appropriate boundary conditions. On the one hand, we are interested in a microscopic description of the edges of the graphene layers. A good description of the armchair and zigzag edges of a graphene layer is of fundamental importance to describe the interface with another system at a microscopic level. On the other hand, the Green function techniques must be adapted to include superconducting correlations on the graphene layer.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-01110-3_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-01109-7", 
        "978-3-319-01110-3"
      ], 
      "name": "Superconductivity in Graphene and Carbon Nanotubes", 
      "type": "Book"
    }, 
    "name": "Green Functions Techniques for Graphene Layers with Edges", 
    "pagination": "31-50", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-01110-3_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a8b400475a629f4790549126fdfa0d55cc152522a4287488a99156ec8ffb8d3b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035415480"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-01110-3_3", 
      "https://app.dimensions.ai/details/publication/pub.1035415480"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T17:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000061.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-01110-3_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-01110-3_3'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-01110-3_3 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Nf13ea421c93e401ea14784eb4b1d88d2
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description The basic properties of Green functions are described in Appendix A. In this chapter we extend several Green function techniques to the case of carbon based nanostructures. The case of graphene is of particular interest since the results obtained for graphene layers can be applied to carbon nanotubes by introducing the appropriate boundary conditions. On the one hand, we are interested in a microscopic description of the edges of the graphene layers. A good description of the armchair and zigzag edges of a graphene layer is of fundamental importance to describe the interface with another system at a microscopic level. On the other hand, the Green function techniques must be adapted to include superconducting correlations on the graphene layer.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nc353a0a7c89d40e1b3a5e0d62d93e512
11 schema:name Green Functions Techniques for Graphene Layers with Edges
12 schema:pagination 31-50
13 schema:productId N11a827c7dfbb4d1bbb9160c7ba5524f4
14 N525d1d87d62a4a93880b0ac3c7056da5
15 Nab84afde2a14437ca3770a7465a56b68
16 schema:publisher Nd2ebd6d7905f4e34b3e42cb7d0e97083
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035415480
18 https://doi.org/10.1007/978-3-319-01110-3_3
19 schema:sdDatePublished 2019-04-15T17:58
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N8b828b195b574ad2bd55d4368df01f64
22 schema:url http://link.springer.com/10.1007/978-3-319-01110-3_3
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N11a827c7dfbb4d1bbb9160c7ba5524f4 schema:name readcube_id
27 schema:value a8b400475a629f4790549126fdfa0d55cc152522a4287488a99156ec8ffb8d3b
28 rdf:type schema:PropertyValue
29 N525d1d87d62a4a93880b0ac3c7056da5 schema:name doi
30 schema:value 10.1007/978-3-319-01110-3_3
31 rdf:type schema:PropertyValue
32 N8b828b195b574ad2bd55d4368df01f64 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 Nab84afde2a14437ca3770a7465a56b68 schema:name dimensions_id
35 schema:value pub.1035415480
36 rdf:type schema:PropertyValue
37 Nc353a0a7c89d40e1b3a5e0d62d93e512 schema:isbn 978-3-319-01109-7
38 978-3-319-01110-3
39 schema:name Superconductivity in Graphene and Carbon Nanotubes
40 rdf:type schema:Book
41 Nd2ebd6d7905f4e34b3e42cb7d0e97083 schema:location Cham
42 schema:name Springer International Publishing
43 rdf:type schema:Organisation
44 Nf13ea421c93e401ea14784eb4b1d88d2 rdf:first sg:person.012446627203.55
45 rdf:rest rdf:nil
46 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
47 schema:name Physical Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
50 schema:name Condensed Matter Physics
51 rdf:type schema:DefinedTerm
52 sg:person.012446627203.55 schema:affiliation https://www.grid.ac/institutes/grid.8379.5
53 schema:familyName Atienza
54 schema:givenName Pablo Burset
55 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012446627203.55
56 rdf:type schema:Person
57 https://www.grid.ac/institutes/grid.8379.5 schema:alternateName University of Würzburg
58 schema:name Institute for Theoretical Physics and Astrophysics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
59 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...