Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Corina Iovan , Ana-Maria Olteanu-Raimond , Thomas Couronné , Zbigniew Smoreda

ABSTRACT

In the past few years, mobile network data are considered as a useful complementary source of information for human mobility research. Mobile phone datasets contain massive amount of spatiotemporal localization of millions of users. The analyze of such huge amount of data for mobility studies reveals many issues such as time computation, users sampling, spatiotemporal heterogeneities, semantic incompleteness. In this chapter, two issues are addressed: (1) location sampling aiming at decreasing computation time without losing useful information on the one hand and to eliminate data considered as noise in the other hand and (2) users sampling whose goal is to select users having relevant information. For the first issue two measures allowing eliminating redundant information and ping-pong positions are proposed. The second issue requires the definition of a set of measures allowing estimating mobile phone data quality. New methods to qualify mobile phone data at local and global level are proposed. The methods are tested on one-day mobile phone data coming from technical mobile network probes. More... »

PAGES

247-265

Book

TITLE

Geographic Information Science at the Heart of Europe

ISBN

978-3-319-00614-7
978-3-319-00615-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-00615-4_14

DOI

http://dx.doi.org/10.1007/978-3-319-00615-4_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001603181


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Sociology and Economics of Networks and Services department, Orange Labs R&D, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Iovan", 
        "givenName": "Corina", 
        "id": "sg:person.014560665131.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560665131.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sociology and Economics of Networks and Services department, Orange Labs R&D, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olteanu-Raimond", 
        "givenName": "Ana-Maria", 
        "id": "sg:person.013221720707.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013221720707.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sociology and Economics of Networks and Services department, Orange Labs R&D, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Couronn\u00e9", 
        "givenName": "Thomas", 
        "id": "sg:person.01063446112.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063446112.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Sociology and Economics of Networks and Services department, Orange Labs R&D, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smoreda", 
        "givenName": "Zbigniew", 
        "id": "sg:person.016432720647.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432720647.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.physa.2012.11.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003455714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17489725.2010.532816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005251084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compenvurbsys.2011.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009019701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0645-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021299597", 
          "https://doi.org/10.1007/s10955-012-0645-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvlc.2011.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021457181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2412096.2412101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026018545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0016939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027000112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10708-011-9413-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027311185", 
          "https://doi.org/10.1007/s10708-011-9413-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0020814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027346189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20291-9_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031461756", 
          "https://doi.org/10.1007/978-3-642-20291-9_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-20291-9_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031461756", 
          "https://doi.org/10.1007/978-3-642-20291-9_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034823586", 
          "https://doi.org/10.1038/nature06958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11277-010-9922-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034996534", 
          "https://doi.org/10.1007/s11277-010-9922-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2398356.2398375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037050318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1409635.1409677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039968496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040139833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040139833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14715-9_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048927467", 
          "https://doi.org/10.1007/978-3-642-14715-9_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-14715-9_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048927467", 
          "https://doi.org/10.1007/978-3-642-14715-9_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10630731003597322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049481698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-its:20060020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056830106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-its:20060020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056830106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/35.486807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061159203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mprv.2011.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061418651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tvcg.2012.311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061813902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/uic-atc.2012.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093239617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mdm.2010.24", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094071008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vetecs.2012.6239926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094195330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/passat/socialcom.2011.230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094541587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/9781781902882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096394157"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "In the past few years, mobile network data are considered as a useful complementary source of information for human mobility research. Mobile phone datasets contain massive amount of spatiotemporal localization of millions of users. The analyze of such huge amount of data for mobility studies reveals many issues such as time computation, users sampling, spatiotemporal heterogeneities, semantic incompleteness. In this chapter, two issues are addressed: (1) location sampling aiming at decreasing computation time without losing useful information on the one hand and to eliminate data considered as noise in the other hand and (2) users sampling whose goal is to select users having relevant information. For the first issue two measures allowing eliminating redundant information and ping-pong positions are proposed. The second issue requires the definition of a set of measures allowing estimating mobile phone data quality. New methods to qualify mobile phone data at local and global level are proposed. The methods are tested on one-day mobile phone data coming from technical mobile network probes.", 
    "editor": [
      {
        "familyName": "Vandenbroucke", 
        "givenName": "Danny", 
        "type": "Person"
      }, 
      {
        "familyName": "Bucher", 
        "givenName": "B\u00e9n\u00e9dicte", 
        "type": "Person"
      }, 
      {
        "familyName": "Crompvoets", 
        "givenName": "Joep", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-00615-4_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-00614-7", 
        "978-3-319-00615-4"
      ], 
      "name": "Geographic Information Science at the Heart of Europe", 
      "type": "Book"
    }, 
    "name": "Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies", 
    "pagination": "247-265", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-00615-4_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "07a31c7bae2b364c793e9093ef87a9d74c8aaef34e78ef649067df7d73e67fa4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001603181"
        ]
      }
    ], 
    "publisher": {
      "location": "Cham", 
      "name": "Springer International Publishing", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-00615-4_14", 
      "https://app.dimensions.ai/details/publication/pub.1001603181"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T21:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000244.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-319-00615-4_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00615-4_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00615-4_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00615-4_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00615-4_14'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      23 PREDICATES      53 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-00615-4_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb9bc90474219464780b7d5a9630a578b
4 schema:citation sg:pub.10.1007/978-3-642-14715-9_3
5 sg:pub.10.1007/978-3-642-20291-9_10
6 sg:pub.10.1007/s10708-011-9413-y
7 sg:pub.10.1007/s10955-012-0645-0
8 sg:pub.10.1007/s11277-010-9922-x
9 sg:pub.10.1038/nature06958
10 https://doi.org/10.1016/j.compenvurbsys.2011.07.003
11 https://doi.org/10.1016/j.jvlc.2011.02.003
12 https://doi.org/10.1016/j.physa.2012.11.040
13 https://doi.org/10.1049/iet-its:20060020
14 https://doi.org/10.1080/10630731003597322
15 https://doi.org/10.1080/17489725.2010.532816
16 https://doi.org/10.1108/9781781902882
17 https://doi.org/10.1109/35.486807
18 https://doi.org/10.1109/mdm.2010.24
19 https://doi.org/10.1109/mprv.2011.41
20 https://doi.org/10.1109/passat/socialcom.2011.230
21 https://doi.org/10.1109/tvcg.2012.311
22 https://doi.org/10.1109/uic-atc.2012.28
23 https://doi.org/10.1109/vetecs.2012.6239926
24 https://doi.org/10.1126/science.1177170
25 https://doi.org/10.1145/1409635.1409677
26 https://doi.org/10.1145/2398356.2398375
27 https://doi.org/10.1145/2412096.2412101
28 https://doi.org/10.1371/journal.pone.0016939
29 https://doi.org/10.1371/journal.pone.0020814
30 schema:datePublished 2013
31 schema:datePublishedReg 2013-01-01
32 schema:description In the past few years, mobile network data are considered as a useful complementary source of information for human mobility research. Mobile phone datasets contain massive amount of spatiotemporal localization of millions of users. The analyze of such huge amount of data for mobility studies reveals many issues such as time computation, users sampling, spatiotemporal heterogeneities, semantic incompleteness. In this chapter, two issues are addressed: (1) location sampling aiming at decreasing computation time without losing useful information on the one hand and to eliminate data considered as noise in the other hand and (2) users sampling whose goal is to select users having relevant information. For the first issue two measures allowing eliminating redundant information and ping-pong positions are proposed. The second issue requires the definition of a set of measures allowing estimating mobile phone data quality. New methods to qualify mobile phone data at local and global level are proposed. The methods are tested on one-day mobile phone data coming from technical mobile network probes.
33 schema:editor N9874e10912c84cc3a9544f79a2a714c0
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N0853812b8c0b49e88bb35f5efe50de86
38 schema:name Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies
39 schema:pagination 247-265
40 schema:productId N0753f9872d364d34bd2c435d26d6ff41
41 N3945bb698101445fb152fbb9aa9605c6
42 N69707d1d28cf4197890c3fdd464d3111
43 schema:publisher Nf01252b7f1a240149c7c9db451c332af
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001603181
45 https://doi.org/10.1007/978-3-319-00615-4_14
46 schema:sdDatePublished 2019-04-15T21:55
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Ncc8535b05d4f4e54a74fea085775c894
49 schema:url http://link.springer.com/10.1007/978-3-319-00615-4_14
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N0753f9872d364d34bd2c435d26d6ff41 schema:name doi
54 schema:value 10.1007/978-3-319-00615-4_14
55 rdf:type schema:PropertyValue
56 N0853812b8c0b49e88bb35f5efe50de86 schema:isbn 978-3-319-00614-7
57 978-3-319-00615-4
58 schema:name Geographic Information Science at the Heart of Europe
59 rdf:type schema:Book
60 N30c3d748e72c440698e45eb21fd1666b schema:familyName Crompvoets
61 schema:givenName Joep
62 rdf:type schema:Person
63 N3945bb698101445fb152fbb9aa9605c6 schema:name readcube_id
64 schema:value 07a31c7bae2b364c793e9093ef87a9d74c8aaef34e78ef649067df7d73e67fa4
65 rdf:type schema:PropertyValue
66 N3d390f7f5d1c4239b5a44301b39c0caa schema:familyName Bucher
67 schema:givenName Bénédicte
68 rdf:type schema:Person
69 N3dd11f9ed252424e96729ecd8b8990da schema:name Sociology and Economics of Networks and Services department, Orange Labs R&D, Paris, France
70 rdf:type schema:Organization
71 N55f30486fa674d3cba9641e086f5542e schema:familyName Vandenbroucke
72 schema:givenName Danny
73 rdf:type schema:Person
74 N5dc14fb7fab7414094fda1c03bb56bdf rdf:first sg:person.01063446112.13
75 rdf:rest N97076794e128485ba378ba351e88e199
76 N69707d1d28cf4197890c3fdd464d3111 schema:name dimensions_id
77 schema:value pub.1001603181
78 rdf:type schema:PropertyValue
79 N8b8cd6ae6fbd4a4ca2f902e291de5fda rdf:first N3d390f7f5d1c4239b5a44301b39c0caa
80 rdf:rest N9c66944bfcbe4ce4becded446f6aaf92
81 N97076794e128485ba378ba351e88e199 rdf:first sg:person.016432720647.20
82 rdf:rest rdf:nil
83 N9874e10912c84cc3a9544f79a2a714c0 rdf:first N55f30486fa674d3cba9641e086f5542e
84 rdf:rest N8b8cd6ae6fbd4a4ca2f902e291de5fda
85 N9baf4ede5b8840f886bfbad3ca615e13 schema:name Sociology and Economics of Networks and Services department, Orange Labs R&D, Paris, France
86 rdf:type schema:Organization
87 N9c66944bfcbe4ce4becded446f6aaf92 rdf:first N30c3d748e72c440698e45eb21fd1666b
88 rdf:rest rdf:nil
89 Nb9bc90474219464780b7d5a9630a578b rdf:first sg:person.014560665131.41
90 rdf:rest Ndb0f5977059643beaf6970f4a0eae0c0
91 Ncc8535b05d4f4e54a74fea085775c894 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Ndb0f5977059643beaf6970f4a0eae0c0 rdf:first sg:person.013221720707.51
94 rdf:rest N5dc14fb7fab7414094fda1c03bb56bdf
95 Nf01252b7f1a240149c7c9db451c332af schema:location Cham
96 schema:name Springer International Publishing
97 rdf:type schema:Organisation
98 Nfa56c37f3b56435180d286195af4f727 schema:name Sociology and Economics of Networks and Services department, Orange Labs R&D, Paris, France
99 rdf:type schema:Organization
100 Nfeaf961e428a4e92a078d1f3f20c426b schema:name Sociology and Economics of Networks and Services department, Orange Labs R&D, Paris, France
101 rdf:type schema:Organization
102 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
103 schema:name Information and Computing Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
106 schema:name Artificial Intelligence and Image Processing
107 rdf:type schema:DefinedTerm
108 sg:person.01063446112.13 schema:affiliation Nfeaf961e428a4e92a078d1f3f20c426b
109 schema:familyName Couronné
110 schema:givenName Thomas
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063446112.13
112 rdf:type schema:Person
113 sg:person.013221720707.51 schema:affiliation N9baf4ede5b8840f886bfbad3ca615e13
114 schema:familyName Olteanu-Raimond
115 schema:givenName Ana-Maria
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013221720707.51
117 rdf:type schema:Person
118 sg:person.014560665131.41 schema:affiliation N3dd11f9ed252424e96729ecd8b8990da
119 schema:familyName Iovan
120 schema:givenName Corina
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560665131.41
122 rdf:type schema:Person
123 sg:person.016432720647.20 schema:affiliation Nfa56c37f3b56435180d286195af4f727
124 schema:familyName Smoreda
125 schema:givenName Zbigniew
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432720647.20
127 rdf:type schema:Person
128 sg:pub.10.1007/978-3-642-14715-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048927467
129 https://doi.org/10.1007/978-3-642-14715-9_3
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-642-20291-9_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031461756
132 https://doi.org/10.1007/978-3-642-20291-9_10
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10708-011-9413-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027311185
135 https://doi.org/10.1007/s10708-011-9413-y
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10955-012-0645-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021299597
138 https://doi.org/10.1007/s10955-012-0645-0
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11277-010-9922-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034996534
141 https://doi.org/10.1007/s11277-010-9922-x
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature06958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034823586
144 https://doi.org/10.1038/nature06958
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.compenvurbsys.2011.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009019701
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jvlc.2011.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021457181
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.physa.2012.11.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003455714
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1049/iet-its:20060020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056830106
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1080/10630731003597322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049481698
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1080/17489725.2010.532816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005251084
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1108/9781781902882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096394157
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/35.486807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061159203
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/mdm.2010.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094071008
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/mprv.2011.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061418651
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/passat/socialcom.2011.230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094541587
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/tvcg.2012.311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061813902
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/uic-atc.2012.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093239617
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/vetecs.2012.6239926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094195330
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.1177170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040139833
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1145/1409635.1409677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039968496
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1145/2398356.2398375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037050318
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1145/2412096.2412101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026018545
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1371/journal.pone.0016939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027000112
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1371/journal.pone.0020814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027346189
185 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...