Ontology type: schema:Chapter
2013
AUTHORSStefka Fidanova , Olympia Roeva , Maria Ganzha
ABSTRACTE. coli plays significant role in modern biological engineering and industrial microbiology. In this paper the Ant Colony Optimization algorithm and Genetic algorithm are proposed for parameter identification of an E. coli fed-batch cultivation process model. A system of nonlinear ordinary differential equations is used to model the biomass growth and the substrate utilization. We use real experimental data set from an E. coli MC4110 fed-batch cultivation process for performing parameter optimization. The objective function was formulated as a distance between the model predicted and the experimental data. Two different distances were used and compared – the Least Square Regression and the Hausdorff Distance. The Hausdorff Distance was used for the first time to solve the considered parameter optimization problem. The results showed that better results concerning model accuracy are obtained using the objective function with a Hausdorff Distance between the modeled and the measured data. Although the Hausdorff Distance is more time consuming than the Least Square Distance, this metric is more realistic for the considered problem. More... »
PAGES51-71
Recent Advances in Computational Optimization
ISBN
978-3-319-00409-9
978-3-319-00410-5
http://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4
DOIhttp://dx.doi.org/10.1007/978-3-319-00410-5_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1053347748
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "IICT-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.410344.6",
"name": [
"IICT-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Fidanova",
"givenName": "Stefka",
"id": "sg:person.011173106320.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "IBFBMI-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria",
"id": "http://www.grid.ac/institutes/grid.410344.6",
"name": [
"IBFBMI-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria"
],
"type": "Organization"
},
"familyName": "Roeva",
"givenName": "Olympia",
"id": "sg:person.015745057111.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "System Research Institute, Polish Academy of Sciences, Newelska Str. 6, 01-447, Warsaw, Poland",
"id": "http://www.grid.ac/institutes/grid.413454.3",
"name": [
"System Research Institute, Polish Academy of Sciences, Newelska Str. 6, 01-447, Warsaw, Poland"
],
"type": "Organization"
},
"familyName": "Ganzha",
"givenName": "Maria",
"id": "sg:person.012054343730.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36"
],
"type": "Person"
}
],
"datePublished": "2013",
"datePublishedReg": "2013-01-01",
"description": "E. coli plays significant role in modern biological engineering and industrial microbiology. In this paper the Ant Colony Optimization algorithm and Genetic algorithm are proposed for parameter identification of an E. coli fed-batch cultivation process model. A system of nonlinear ordinary differential equations is used to model the biomass growth and the substrate utilization. We use real experimental data set from an E. coli MC4110 fed-batch cultivation process for performing parameter optimization. The objective function was formulated as a distance between the model predicted and the experimental data. Two different distances were used and compared \u2013 the Least Square Regression and the Hausdorff Distance. The Hausdorff Distance was used for the first time to solve the considered parameter optimization problem. The results showed that better results concerning model accuracy are obtained using the objective function with a Hausdorff Distance between the modeled and the measured data. Although the Hausdorff Distance is more time consuming than the Least Square Distance, this metric is more realistic for the considered problem.",
"editor": [
{
"familyName": "Fidanova",
"givenName": "Stefka",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-319-00410-5_4",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-319-00409-9",
"978-3-319-00410-5"
],
"name": "Recent Advances in Computational Optimization",
"type": "Book"
},
"keywords": [
"nonlinear ordinary differential equations",
"coli MC4110 fed-batch cultivation process",
"ordinary differential equations",
"objective function",
"parameter optimization problem",
"least squares distance",
"ant colony optimization algorithm",
"colony optimization algorithm",
"differential equations",
"real experimental data",
"optimization problem",
"Hausdorff distance",
"parameter identification",
"optimization algorithm",
"experimental data",
"parameter optimization",
"fed-batch cultivation process",
"model accuracy",
"square distance",
"least squares regression",
"genetic algorithm",
"parameter settings",
"squares regression",
"algorithm",
"process model",
"equations",
"problem",
"model",
"optimization",
"distance",
"ACO",
"different distances",
"better results",
"function",
"accuracy",
"metrics",
"results",
"system",
"biological engineering",
"data",
"engineering",
"time",
"gas",
"first time",
"cultivation process",
"regression",
"process",
"biomass growth",
"identification",
"significant role",
"setting",
"cultivation model",
"utilization",
"more time",
"growth",
"industrial microbiology",
"role",
"microbiology",
"substrate utilization",
"paper",
"coli"
],
"name": "ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation Model",
"pagination": "51-71",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1053347748"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-319-00410-5_4"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-319-00410-5_4",
"https://app.dimensions.ai/details/publication/pub.1053347748"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-10T10:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_271.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/978-3-319-00410-5_4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
23 PREDICATES
87 URIs
80 LITERALS
7 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/978-3-319-00410-5_4 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | N17a737cea783410b9e763e1c37e1920c |
4 | ″ | schema:datePublished | 2013 |
5 | ″ | schema:datePublishedReg | 2013-01-01 |
6 | ″ | schema:description | E. coli plays significant role in modern biological engineering and industrial microbiology. In this paper the Ant Colony Optimization algorithm and Genetic algorithm are proposed for parameter identification of an E. coli fed-batch cultivation process model. A system of nonlinear ordinary differential equations is used to model the biomass growth and the substrate utilization. We use real experimental data set from an E. coli MC4110 fed-batch cultivation process for performing parameter optimization. The objective function was formulated as a distance between the model predicted and the experimental data. Two different distances were used and compared – the Least Square Regression and the Hausdorff Distance. The Hausdorff Distance was used for the first time to solve the considered parameter optimization problem. The results showed that better results concerning model accuracy are obtained using the objective function with a Hausdorff Distance between the modeled and the measured data. Although the Hausdorff Distance is more time consuming than the Least Square Distance, this metric is more realistic for the considered problem. |
7 | ″ | schema:editor | Nf2a4cbe1d57b407c934f7da0858b32fd |
8 | ″ | schema:genre | chapter |
9 | ″ | schema:inLanguage | en |
10 | ″ | schema:isAccessibleForFree | false |
11 | ″ | schema:isPartOf | N4d39ea1bda16473db5ff54a44c3739da |
12 | ″ | schema:keywords | ACO |
13 | ″ | ″ | Hausdorff distance |
14 | ″ | ″ | accuracy |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | ant colony optimization algorithm |
17 | ″ | ″ | better results |
18 | ″ | ″ | biological engineering |
19 | ″ | ″ | biomass growth |
20 | ″ | ″ | coli |
21 | ″ | ″ | coli MC4110 fed-batch cultivation process |
22 | ″ | ″ | colony optimization algorithm |
23 | ″ | ″ | cultivation model |
24 | ″ | ″ | cultivation process |
25 | ″ | ″ | data |
26 | ″ | ″ | different distances |
27 | ″ | ″ | differential equations |
28 | ″ | ″ | distance |
29 | ″ | ″ | engineering |
30 | ″ | ″ | equations |
31 | ″ | ″ | experimental data |
32 | ″ | ″ | fed-batch cultivation process |
33 | ″ | ″ | first time |
34 | ″ | ″ | function |
35 | ″ | ″ | gas |
36 | ″ | ″ | genetic algorithm |
37 | ″ | ″ | growth |
38 | ″ | ″ | identification |
39 | ″ | ″ | industrial microbiology |
40 | ″ | ″ | least squares distance |
41 | ″ | ″ | least squares regression |
42 | ″ | ″ | metrics |
43 | ″ | ″ | microbiology |
44 | ″ | ″ | model |
45 | ″ | ″ | model accuracy |
46 | ″ | ″ | more time |
47 | ″ | ″ | nonlinear ordinary differential equations |
48 | ″ | ″ | objective function |
49 | ″ | ″ | optimization |
50 | ″ | ″ | optimization algorithm |
51 | ″ | ″ | optimization problem |
52 | ″ | ″ | ordinary differential equations |
53 | ″ | ″ | paper |
54 | ″ | ″ | parameter identification |
55 | ″ | ″ | parameter optimization |
56 | ″ | ″ | parameter optimization problem |
57 | ″ | ″ | parameter settings |
58 | ″ | ″ | problem |
59 | ″ | ″ | process |
60 | ″ | ″ | process model |
61 | ″ | ″ | real experimental data |
62 | ″ | ″ | regression |
63 | ″ | ″ | results |
64 | ″ | ″ | role |
65 | ″ | ″ | setting |
66 | ″ | ″ | significant role |
67 | ″ | ″ | square distance |
68 | ″ | ″ | squares regression |
69 | ″ | ″ | substrate utilization |
70 | ″ | ″ | system |
71 | ″ | ″ | time |
72 | ″ | ″ | utilization |
73 | ″ | schema:name | ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation Model |
74 | ″ | schema:pagination | 51-71 |
75 | ″ | schema:productId | Nca283ac181754d30a026e415696c4697 |
76 | ″ | ″ | Nd20a69f9bc024958a809c3562c97f6a7 |
77 | ″ | schema:publisher | N8fd92196bf354c189f0d8d23c290d1ea |
78 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1053347748 |
79 | ″ | ″ | https://doi.org/10.1007/978-3-319-00410-5_4 |
80 | ″ | schema:sdDatePublished | 2022-05-10T10:44 |
81 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
82 | ″ | schema:sdPublisher | Nb7911585a3e54b059027420040d9fa1d |
83 | ″ | schema:url | https://doi.org/10.1007/978-3-319-00410-5_4 |
84 | ″ | sgo:license | sg:explorer/license/ |
85 | ″ | sgo:sdDataset | chapters |
86 | ″ | rdf:type | schema:Chapter |
87 | N17a737cea783410b9e763e1c37e1920c | rdf:first | sg:person.011173106320.18 |
88 | ″ | rdf:rest | N70e0dbbb80df4a93b91ede909391033b |
89 | N4d39ea1bda16473db5ff54a44c3739da | schema:isbn | 978-3-319-00409-9 |
90 | ″ | ″ | 978-3-319-00410-5 |
91 | ″ | schema:name | Recent Advances in Computational Optimization |
92 | ″ | rdf:type | schema:Book |
93 | N70e0dbbb80df4a93b91ede909391033b | rdf:first | sg:person.015745057111.08 |
94 | ″ | rdf:rest | Ne8ab3f8c8a7841ef8647b30b9ef9d044 |
95 | N8fd92196bf354c189f0d8d23c290d1ea | schema:name | Springer Nature |
96 | ″ | rdf:type | schema:Organisation |
97 | Nb7911585a3e54b059027420040d9fa1d | schema:name | Springer Nature - SN SciGraph project |
98 | ″ | rdf:type | schema:Organization |
99 | Nc82a61d95c05459ebd20093e7e3db2bd | schema:familyName | Fidanova |
100 | ″ | schema:givenName | Stefka |
101 | ″ | rdf:type | schema:Person |
102 | Nca283ac181754d30a026e415696c4697 | schema:name | dimensions_id |
103 | ″ | schema:value | pub.1053347748 |
104 | ″ | rdf:type | schema:PropertyValue |
105 | Nd20a69f9bc024958a809c3562c97f6a7 | schema:name | doi |
106 | ″ | schema:value | 10.1007/978-3-319-00410-5_4 |
107 | ″ | rdf:type | schema:PropertyValue |
108 | Ne8ab3f8c8a7841ef8647b30b9ef9d044 | rdf:first | sg:person.012054343730.36 |
109 | ″ | rdf:rest | rdf:nil |
110 | Nf2a4cbe1d57b407c934f7da0858b32fd | rdf:first | Nc82a61d95c05459ebd20093e7e3db2bd |
111 | ″ | rdf:rest | rdf:nil |
112 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Mathematical Sciences |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Applied Mathematics |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | sg:person.011173106320.18 | schema:affiliation | grid-institutes:grid.410344.6 |
119 | ″ | schema:familyName | Fidanova |
120 | ″ | schema:givenName | Stefka |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.012054343730.36 | schema:affiliation | grid-institutes:grid.413454.3 |
124 | ″ | schema:familyName | Ganzha |
125 | ″ | schema:givenName | Maria |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36 |
127 | ″ | rdf:type | schema:Person |
128 | sg:person.015745057111.08 | schema:affiliation | grid-institutes:grid.410344.6 |
129 | ″ | schema:familyName | Roeva |
130 | ″ | schema:givenName | Olympia |
131 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08 |
132 | ″ | rdf:type | schema:Person |
133 | grid-institutes:grid.410344.6 | schema:alternateName | IBFBMI-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria |
134 | ″ | ″ | IICT-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria |
135 | ″ | schema:name | IBFBMI-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria |
136 | ″ | ″ | IICT-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria |
137 | ″ | rdf:type | schema:Organization |
138 | grid-institutes:grid.413454.3 | schema:alternateName | System Research Institute, Polish Academy of Sciences, Newelska Str. 6, 01-447, Warsaw, Poland |
139 | ″ | schema:name | System Research Institute, Polish Academy of Sciences, Newelska Str. 6, 01-447, Warsaw, Poland |
140 | ″ | rdf:type | schema:Organization |