ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation Model View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2013

AUTHORS

Stefka Fidanova , Olympia Roeva , Maria Ganzha

ABSTRACT

E. coli plays significant role in modern biological engineering and industrial microbiology. In this paper the Ant Colony Optimization algorithm and Genetic algorithm are proposed for parameter identification of an E. coli fed-batch cultivation process model. A system of nonlinear ordinary differential equations is used to model the biomass growth and the substrate utilization. We use real experimental data set from an E. coli MC4110 fed-batch cultivation process for performing parameter optimization. The objective function was formulated as a distance between the model predicted and the experimental data. Two different distances were used and compared – the Least Square Regression and the Hausdorff Distance. The Hausdorff Distance was used for the first time to solve the considered parameter optimization problem. The results showed that better results concerning model accuracy are obtained using the objective function with a Hausdorff Distance between the modeled and the measured data. Although the Hausdorff Distance is more time consuming than the Least Square Distance, this metric is more realistic for the considered problem. More... »

PAGES

51-71

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4

DOI

http://dx.doi.org/10.1007/978-3-319-00410-5_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053347748


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IICT-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "IICT-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "id": "sg:person.011173106320.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBFBMI-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.410344.6", 
          "name": [
            "IBFBMI-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roeva", 
        "givenName": "Olympia", 
        "id": "sg:person.015745057111.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "System Research Institute, Polish Academy of Sciences, Newelska Str. 6, 01-447, Warsaw, Poland", 
          "id": "http://www.grid.ac/institutes/grid.413454.3", 
          "name": [
            "System Research Institute, Polish Academy of Sciences, Newelska Str. 6, 01-447, Warsaw, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganzha", 
        "givenName": "Maria", 
        "id": "sg:person.012054343730.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2013", 
    "datePublishedReg": "2013-01-01", 
    "description": "E. coli plays significant role in modern biological engineering and industrial microbiology. In this paper the Ant Colony Optimization algorithm and Genetic algorithm are proposed for parameter identification of an E. coli fed-batch cultivation process model. A system of nonlinear ordinary differential equations is used to model the biomass growth and the substrate utilization. We use real experimental data set from an E. coli MC4110 fed-batch cultivation process for performing parameter optimization. The objective function was formulated as a distance between the model predicted and the experimental data. Two different distances were used and compared \u2013 the Least Square Regression and the Hausdorff Distance. The Hausdorff Distance was used for the first time to solve the considered parameter optimization problem. The results showed that better results concerning model accuracy are obtained using the objective function with a Hausdorff Distance between the modeled and the measured data. Although the Hausdorff Distance is more time consuming than the Least Square Distance, this metric is more realistic for the considered problem.", 
    "editor": [
      {
        "familyName": "Fidanova", 
        "givenName": "Stefka", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-00410-5_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-319-00409-9", 
        "978-3-319-00410-5"
      ], 
      "name": "Recent Advances in Computational Optimization", 
      "type": "Book"
    }, 
    "keywords": [
      "nonlinear ordinary differential equations", 
      "coli MC4110 fed-batch cultivation process", 
      "ordinary differential equations", 
      "objective function", 
      "parameter optimization problem", 
      "least squares distance", 
      "ant colony optimization algorithm", 
      "colony optimization algorithm", 
      "differential equations", 
      "real experimental data", 
      "optimization problem", 
      "Hausdorff distance", 
      "parameter identification", 
      "optimization algorithm", 
      "experimental data", 
      "parameter optimization", 
      "fed-batch cultivation process", 
      "model accuracy", 
      "square distance", 
      "least squares regression", 
      "genetic algorithm", 
      "parameter settings", 
      "squares regression", 
      "algorithm", 
      "process model", 
      "equations", 
      "problem", 
      "model", 
      "optimization", 
      "distance", 
      "ACO", 
      "different distances", 
      "better results", 
      "function", 
      "accuracy", 
      "metrics", 
      "results", 
      "system", 
      "biological engineering", 
      "data", 
      "engineering", 
      "time", 
      "gas", 
      "first time", 
      "cultivation process", 
      "regression", 
      "process", 
      "biomass growth", 
      "identification", 
      "significant role", 
      "setting", 
      "cultivation model", 
      "utilization", 
      "more time", 
      "growth", 
      "industrial microbiology", 
      "role", 
      "microbiology", 
      "substrate utilization", 
      "paper", 
      "coli"
    ], 
    "name": "ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation Model", 
    "pagination": "51-71", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053347748"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-00410-5_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-00410-5_4", 
      "https://app.dimensions.ai/details/publication/pub.1053347748"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_271.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-00410-5_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00410-5_4'


 

This table displays all metadata directly associated to this object as RDF triples.

140 TRIPLES      23 PREDICATES      87 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-00410-5_4 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N17a737cea783410b9e763e1c37e1920c
4 schema:datePublished 2013
5 schema:datePublishedReg 2013-01-01
6 schema:description E. coli plays significant role in modern biological engineering and industrial microbiology. In this paper the Ant Colony Optimization algorithm and Genetic algorithm are proposed for parameter identification of an E. coli fed-batch cultivation process model. A system of nonlinear ordinary differential equations is used to model the biomass growth and the substrate utilization. We use real experimental data set from an E. coli MC4110 fed-batch cultivation process for performing parameter optimization. The objective function was formulated as a distance between the model predicted and the experimental data. Two different distances were used and compared – the Least Square Regression and the Hausdorff Distance. The Hausdorff Distance was used for the first time to solve the considered parameter optimization problem. The results showed that better results concerning model accuracy are obtained using the objective function with a Hausdorff Distance between the modeled and the measured data. Although the Hausdorff Distance is more time consuming than the Least Square Distance, this metric is more realistic for the considered problem.
7 schema:editor Nf2a4cbe1d57b407c934f7da0858b32fd
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4d39ea1bda16473db5ff54a44c3739da
12 schema:keywords ACO
13 Hausdorff distance
14 accuracy
15 algorithm
16 ant colony optimization algorithm
17 better results
18 biological engineering
19 biomass growth
20 coli
21 coli MC4110 fed-batch cultivation process
22 colony optimization algorithm
23 cultivation model
24 cultivation process
25 data
26 different distances
27 differential equations
28 distance
29 engineering
30 equations
31 experimental data
32 fed-batch cultivation process
33 first time
34 function
35 gas
36 genetic algorithm
37 growth
38 identification
39 industrial microbiology
40 least squares distance
41 least squares regression
42 metrics
43 microbiology
44 model
45 model accuracy
46 more time
47 nonlinear ordinary differential equations
48 objective function
49 optimization
50 optimization algorithm
51 optimization problem
52 ordinary differential equations
53 paper
54 parameter identification
55 parameter optimization
56 parameter optimization problem
57 parameter settings
58 problem
59 process
60 process model
61 real experimental data
62 regression
63 results
64 role
65 setting
66 significant role
67 square distance
68 squares regression
69 substrate utilization
70 system
71 time
72 utilization
73 schema:name ACO and GA for Parameter Settings of E. coli Fed-Batch Cultivation Model
74 schema:pagination 51-71
75 schema:productId Nca283ac181754d30a026e415696c4697
76 Nd20a69f9bc024958a809c3562c97f6a7
77 schema:publisher N8fd92196bf354c189f0d8d23c290d1ea
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053347748
79 https://doi.org/10.1007/978-3-319-00410-5_4
80 schema:sdDatePublished 2022-05-10T10:44
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher Nb7911585a3e54b059027420040d9fa1d
83 schema:url https://doi.org/10.1007/978-3-319-00410-5_4
84 sgo:license sg:explorer/license/
85 sgo:sdDataset chapters
86 rdf:type schema:Chapter
87 N17a737cea783410b9e763e1c37e1920c rdf:first sg:person.011173106320.18
88 rdf:rest N70e0dbbb80df4a93b91ede909391033b
89 N4d39ea1bda16473db5ff54a44c3739da schema:isbn 978-3-319-00409-9
90 978-3-319-00410-5
91 schema:name Recent Advances in Computational Optimization
92 rdf:type schema:Book
93 N70e0dbbb80df4a93b91ede909391033b rdf:first sg:person.015745057111.08
94 rdf:rest Ne8ab3f8c8a7841ef8647b30b9ef9d044
95 N8fd92196bf354c189f0d8d23c290d1ea schema:name Springer Nature
96 rdf:type schema:Organisation
97 Nb7911585a3e54b059027420040d9fa1d schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nc82a61d95c05459ebd20093e7e3db2bd schema:familyName Fidanova
100 schema:givenName Stefka
101 rdf:type schema:Person
102 Nca283ac181754d30a026e415696c4697 schema:name dimensions_id
103 schema:value pub.1053347748
104 rdf:type schema:PropertyValue
105 Nd20a69f9bc024958a809c3562c97f6a7 schema:name doi
106 schema:value 10.1007/978-3-319-00410-5_4
107 rdf:type schema:PropertyValue
108 Ne8ab3f8c8a7841ef8647b30b9ef9d044 rdf:first sg:person.012054343730.36
109 rdf:rest rdf:nil
110 Nf2a4cbe1d57b407c934f7da0858b32fd rdf:first Nc82a61d95c05459ebd20093e7e3db2bd
111 rdf:rest rdf:nil
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
116 schema:name Applied Mathematics
117 rdf:type schema:DefinedTerm
118 sg:person.011173106320.18 schema:affiliation grid-institutes:grid.410344.6
119 schema:familyName Fidanova
120 schema:givenName Stefka
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011173106320.18
122 rdf:type schema:Person
123 sg:person.012054343730.36 schema:affiliation grid-institutes:grid.413454.3
124 schema:familyName Ganzha
125 schema:givenName Maria
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012054343730.36
127 rdf:type schema:Person
128 sg:person.015745057111.08 schema:affiliation grid-institutes:grid.410344.6
129 schema:familyName Roeva
130 schema:givenName Olympia
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015745057111.08
132 rdf:type schema:Person
133 grid-institutes:grid.410344.6 schema:alternateName IBFBMI-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria
134 IICT-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria
135 schema:name IBFBMI-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.105, 1113, Sofia, Bulgaria
136 IICT-Bulgarian Academy of Science, Acad. G. Bonchev Str., bl. 25A, 1113, Sofia, Bulgaria
137 rdf:type schema:Organization
138 grid-institutes:grid.413454.3 schema:alternateName System Research Institute, Polish Academy of Sciences, Newelska Str. 6, 01-447, Warsaw, Poland
139 schema:name System Research Institute, Polish Academy of Sciences, Newelska Str. 6, 01-447, Warsaw, Poland
140 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...