Uncovering the Network Structure of the World Currency Market: Cross-Correlations in the Fluctuations of Daily Exchange Rates View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2014

AUTHORS

Sitabhra Sinha , Uday Kovur

ABSTRACT

The cross-correlations between the exchange rate fluctuations of 74 currencies over the period 1995–2012 are analyzed in this paper. The eigenvalue distribution of the cross-correlation matrix exhibits a bulk which approximately matches the bounds predicted from random matrices constructed using mutually uncorrelated time-series. However, a few large eigenvalues deviating from the bulk contain important information about the global market mode as well as important clusters of strongly interacting currencies. We reconstruct the network structure of the world currency market by using two different graph representation techniques, after filtering out the effects of global or market-wide signals on the one hand and random effects on the other. The two networks reveal complementary insights about the major motive forces of the global economy, including the identification of a group of potentially fast growing economies whose development trajectory may affect the global economy in the future as profoundly as the rise of India and China has affected it in the past decades. More... »

PAGES

203-218

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-319-00023-7_11

DOI

http://dx.doi.org/10.1007/978-3-319-00023-7_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020709001


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1402", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Institute of Mathematical Sciences, CIT Campus, 600113, Taramani, Chennai, India", 
          "id": "http://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, CIT Campus, 600113, Taramani, Chennai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinha", 
        "givenName": "Sitabhra", 
        "id": "sg:person.01106420703.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Birla Institute of Technology & Science, 333031, Pilani, India", 
          "id": "http://www.grid.ac/institutes/grid.418391.6", 
          "name": [
            "Department of Mathematics, Birla Institute of Technology & Science, 333031, Pilani, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovur", 
        "givenName": "Uday", 
        "type": "Person"
      }
    ], 
    "datePublished": "2014", 
    "datePublishedReg": "2014-01-01", 
    "description": "The cross-correlations between the exchange rate fluctuations of 74 currencies over the period 1995\u20132012 are analyzed in this paper. The eigenvalue distribution of the cross-correlation matrix exhibits a bulk which approximately matches the bounds predicted from random matrices constructed using mutually uncorrelated time-series. However, a few large eigenvalues deviating from the bulk contain important information about the global market mode as well as important clusters of strongly interacting currencies. We reconstruct the network structure of the world currency market by using two different graph representation techniques, after filtering out the effects of global or market-wide signals on the one hand and random effects on the other. The two networks reveal complementary insights about the major motive forces of the global economy, including the identification of a group of potentially fast growing economies whose development trajectory may affect the global economy in the future as profoundly as the rise of India and China has affected it in the past decades.", 
    "editor": [
      {
        "familyName": "Abergel", 
        "givenName": "Fr\u00e9d\u00e9ric", 
        "type": "Person"
      }, 
      {
        "familyName": "Aoyama", 
        "givenName": "Hideaki", 
        "type": "Person"
      }, 
      {
        "familyName": "Chakrabarti", 
        "givenName": "Bikas K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Chakraborti", 
        "givenName": "Anirban", 
        "type": "Person"
      }, 
      {
        "familyName": "Ghosh", 
        "givenName": "Asim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-319-00023-7_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-319-00022-0", 
        "978-3-319-00023-7"
      ], 
      "name": "Econophysics of Agent-Based Models", 
      "type": "Book"
    }, 
    "keywords": [
      "world currency markets", 
      "currency markets", 
      "global economy", 
      "exchange rate fluctuations", 
      "daily exchange rates", 
      "major motive force", 
      "rise of India", 
      "exchange rate", 
      "market mode", 
      "rate fluctuations", 
      "economy", 
      "graph representation technique", 
      "development trajectories", 
      "cross-correlation matrix", 
      "currency", 
      "market", 
      "random effects", 
      "random matrices", 
      "complementary insights", 
      "eigenvalue distribution", 
      "largest eigenvalue", 
      "network structure", 
      "important clusters", 
      "fluctuations", 
      "China", 
      "past decade", 
      "cross correlation", 
      "India", 
      "eigenvalues", 
      "bounds", 
      "representation techniques", 
      "matrix", 
      "future", 
      "decades", 
      "effect", 
      "trajectories", 
      "rise", 
      "structure", 
      "bulk", 
      "insights", 
      "important information", 
      "rate", 
      "hand", 
      "information", 
      "network", 
      "force", 
      "distribution", 
      "clusters", 
      "technique", 
      "signals", 
      "mode", 
      "motive force", 
      "identification", 
      "group", 
      "paper"
    ], 
    "name": "Uncovering the Network Structure of the World Currency Market: Cross-Correlations in the Fluctuations of Daily Exchange Rates", 
    "pagination": "203-218", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020709001"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-319-00023-7_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-319-00023-7_11", 
      "https://app.dimensions.ai/details/publication/pub.1020709001"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_426.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-319-00023-7_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00023-7_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00023-7_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00023-7_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-319-00023-7_11'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      81 URIs      74 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-319-00023-7_11 schema:about anzsrc-for:14
2 anzsrc-for:1402
3 schema:author N5c877a3421134553ba4760d4f12ebe11
4 schema:datePublished 2014
5 schema:datePublishedReg 2014-01-01
6 schema:description The cross-correlations between the exchange rate fluctuations of 74 currencies over the period 1995–2012 are analyzed in this paper. The eigenvalue distribution of the cross-correlation matrix exhibits a bulk which approximately matches the bounds predicted from random matrices constructed using mutually uncorrelated time-series. However, a few large eigenvalues deviating from the bulk contain important information about the global market mode as well as important clusters of strongly interacting currencies. We reconstruct the network structure of the world currency market by using two different graph representation techniques, after filtering out the effects of global or market-wide signals on the one hand and random effects on the other. The two networks reveal complementary insights about the major motive forces of the global economy, including the identification of a group of potentially fast growing economies whose development trajectory may affect the global economy in the future as profoundly as the rise of India and China has affected it in the past decades.
7 schema:editor N73972bb9856a4a1c9a5e918b009e7a29
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nc88d35fbf10a4e49b6ba609fdd02eb16
12 schema:keywords China
13 India
14 bounds
15 bulk
16 clusters
17 complementary insights
18 cross correlation
19 cross-correlation matrix
20 currency
21 currency markets
22 daily exchange rates
23 decades
24 development trajectories
25 distribution
26 economy
27 effect
28 eigenvalue distribution
29 eigenvalues
30 exchange rate
31 exchange rate fluctuations
32 fluctuations
33 force
34 future
35 global economy
36 graph representation technique
37 group
38 hand
39 identification
40 important clusters
41 important information
42 information
43 insights
44 largest eigenvalue
45 major motive force
46 market
47 market mode
48 matrix
49 mode
50 motive force
51 network
52 network structure
53 paper
54 past decade
55 random effects
56 random matrices
57 rate
58 rate fluctuations
59 representation techniques
60 rise
61 rise of India
62 signals
63 structure
64 technique
65 trajectories
66 world currency markets
67 schema:name Uncovering the Network Structure of the World Currency Market: Cross-Correlations in the Fluctuations of Daily Exchange Rates
68 schema:pagination 203-218
69 schema:productId N1da6058fc11c4cdbbd09c081c2f8313b
70 N571c4c1fd1a2406e9cd6ac235e10adc9
71 schema:publisher Nd11c44cd8ab84575865c604093c94a0b
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020709001
73 https://doi.org/10.1007/978-3-319-00023-7_11
74 schema:sdDatePublished 2022-05-10T10:53
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N7fbea81f922440539b132eb823aec9a0
77 schema:url https://doi.org/10.1007/978-3-319-00023-7_11
78 sgo:license sg:explorer/license/
79 sgo:sdDataset chapters
80 rdf:type schema:Chapter
81 N1da6058fc11c4cdbbd09c081c2f8313b schema:name dimensions_id
82 schema:value pub.1020709001
83 rdf:type schema:PropertyValue
84 N2fc02fc7bf23410f939baa732e576b78 schema:familyName Chakraborti
85 schema:givenName Anirban
86 rdf:type schema:Person
87 N571c4c1fd1a2406e9cd6ac235e10adc9 schema:name doi
88 schema:value 10.1007/978-3-319-00023-7_11
89 rdf:type schema:PropertyValue
90 N5ade1d06fbb34466b525d5697adc86a4 rdf:first Ndbb03532f3454f98b4b478a61868c970
91 rdf:rest rdf:nil
92 N5c877a3421134553ba4760d4f12ebe11 rdf:first sg:person.01106420703.25
93 rdf:rest N5ade1d06fbb34466b525d5697adc86a4
94 N73972bb9856a4a1c9a5e918b009e7a29 rdf:first N928c69155d80487f89d943d2e4035ef9
95 rdf:rest N935534b925a94ef88e49da621ab04dc5
96 N7f69cc731df74ce1b47f9a0b32347380 rdf:first Nf62212383296444fb08ea5335770df99
97 rdf:rest Na28f9c07d0c74b2681edd337893f5ea8
98 N7fbea81f922440539b132eb823aec9a0 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N928c69155d80487f89d943d2e4035ef9 schema:familyName Abergel
101 schema:givenName Frédéric
102 rdf:type schema:Person
103 N935534b925a94ef88e49da621ab04dc5 rdf:first Nd5804c24dccc4511a90360ce428543d5
104 rdf:rest N7f69cc731df74ce1b47f9a0b32347380
105 Na28f9c07d0c74b2681edd337893f5ea8 rdf:first N2fc02fc7bf23410f939baa732e576b78
106 rdf:rest Nadb5be2d809944248e9ff57baa135d79
107 Nadb5be2d809944248e9ff57baa135d79 rdf:first Ne77c647d4f0742d987730bbcb28c8b4e
108 rdf:rest rdf:nil
109 Nc88d35fbf10a4e49b6ba609fdd02eb16 schema:isbn 978-3-319-00022-0
110 978-3-319-00023-7
111 schema:name Econophysics of Agent-Based Models
112 rdf:type schema:Book
113 Nd11c44cd8ab84575865c604093c94a0b schema:name Springer Nature
114 rdf:type schema:Organisation
115 Nd5804c24dccc4511a90360ce428543d5 schema:familyName Aoyama
116 schema:givenName Hideaki
117 rdf:type schema:Person
118 Ndbb03532f3454f98b4b478a61868c970 schema:affiliation grid-institutes:grid.418391.6
119 schema:familyName Kovur
120 schema:givenName Uday
121 rdf:type schema:Person
122 Ne77c647d4f0742d987730bbcb28c8b4e schema:familyName Ghosh
123 schema:givenName Asim
124 rdf:type schema:Person
125 Nf62212383296444fb08ea5335770df99 schema:familyName Chakrabarti
126 schema:givenName Bikas K.
127 rdf:type schema:Person
128 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
129 schema:name Economics
130 rdf:type schema:DefinedTerm
131 anzsrc-for:1402 schema:inDefinedTermSet anzsrc-for:
132 schema:name Applied Economics
133 rdf:type schema:DefinedTerm
134 sg:person.01106420703.25 schema:affiliation grid-institutes:grid.462414.1
135 schema:familyName Sinha
136 schema:givenName Sitabhra
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106420703.25
138 rdf:type schema:Person
139 grid-institutes:grid.418391.6 schema:alternateName Department of Mathematics, Birla Institute of Technology & Science, 333031, Pilani, India
140 schema:name Department of Mathematics, Birla Institute of Technology & Science, 333031, Pilani, India
141 rdf:type schema:Organization
142 grid-institutes:grid.462414.1 schema:alternateName The Institute of Mathematical Sciences, CIT Campus, 600113, Taramani, Chennai, India
143 schema:name The Institute of Mathematical Sciences, CIT Campus, 600113, Taramani, Chennai, India
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...