Metric Discrepancy Results for Sequences {nkx} and Diophantine Equations View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008-01-01

AUTHORS

István Berkes , Walter Philipp , Robert F. Tichy

ABSTRACT

Let (nk) be an increasing sequence of positive integers. For 0 ≤ x ≤ 1, set (1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \eta _k = \eta _k \left( x \right): = n_k x \left( {mod 1} \right). $$\end{document}

PAGES

95-105

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_4

DOI

http://dx.doi.org/10.1007/978-3-211-74280-8_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032458154


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Mathematik A, Technische Universit\u00e4t Graz, Steyrergasse 30, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Mathematik A, Technische Universit\u00e4t Graz, Steyrergasse 30, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berkes", 
        "givenName": "Istv\u00e1n", 
        "id": "sg:person.07542764371.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07542764371.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Statistik, Technische Universit\u00e4t Graz, Steyrergasse 17, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Statistik, Technische Universit\u00e4t Graz, Steyrergasse 17, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Philipp", 
        "givenName": "Walter", 
        "id": "sg:person.014460715127.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014460715127.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tichy", 
        "givenName": "Robert F.", 
        "id": "sg:person.015312676677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "Let (nk) be an increasing sequence of positive integers. For 0 \u2264 x \u2264 1, set (1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\eta _k  = \\eta _k \\left( x \\right): = n_k x     \\left( {mod 1} \\right).\n$$\\end{document}", 
    "editor": [
      {
        "familyName": "Schlickewei", 
        "givenName": "Hans Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Schmidt", 
        "givenName": "Klaus", 
        "type": "Person"
      }, 
      {
        "familyName": "Tichy", 
        "givenName": "Robert F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-211-74280-8_4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-211-74279-2", 
        "978-3-211-74280-8"
      ], 
      "name": "Diophantine Approximation", 
      "type": "Book"
    }, 
    "keywords": [
      "discrepancy results", 
      "results", 
      "sequence", 
      "Nkx", 
      "positive integer", 
      "equations", 
      "integers", 
      "Diophantine equations", 
      "Metric Discrepancy Results"
    ], 
    "name": "Metric Discrepancy Results for Sequences {nkx} and Diophantine Equations", 
    "pagination": "95-105", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032458154"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-211-74280-8_4"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-211-74280-8_4", 
      "https://app.dimensions.ai/details/publication/pub.1032458154"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_99.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-211-74280-8_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_4'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      23 PREDICATES      34 URIs      27 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-211-74280-8_4 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Ndd8a4a07c3d3487381e3b679f694da11
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description Let (nk) be an increasing sequence of positive integers. For 0 ≤ x ≤ 1, set (1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \eta _k = \eta _k \left( x \right): = n_k x \left( {mod 1} \right). $$\end{document}
7 schema:editor Na1bde191a7a145409ac832df93c058ce
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N47ebea6b233e459ba8083cb5de1c2af9
12 schema:keywords Diophantine equations
13 Metric Discrepancy Results
14 Nkx
15 discrepancy results
16 equations
17 integers
18 positive integer
19 results
20 sequence
21 schema:name Metric Discrepancy Results for Sequences {nkx} and Diophantine Equations
22 schema:pagination 95-105
23 schema:productId N9d19db16055943509aacdaaa6805e2ad
24 Nb2a772448c1d4d8dbc61dc6aebd421e2
25 schema:publisher N1db9d95b38bb4356b4756bc9295d50f3
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032458154
27 https://doi.org/10.1007/978-3-211-74280-8_4
28 schema:sdDatePublished 2021-11-01T19:04
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N7fc2ad6a8d774a2884d7899bde4268d4
31 schema:url https://doi.org/10.1007/978-3-211-74280-8_4
32 sgo:license sg:explorer/license/
33 sgo:sdDataset chapters
34 rdf:type schema:Chapter
35 N1db9d95b38bb4356b4756bc9295d50f3 schema:name Springer Nature
36 rdf:type schema:Organisation
37 N2f8e3b82b677458aaaefb996c62b6ee2 schema:familyName Tichy
38 schema:givenName Robert F.
39 rdf:type schema:Person
40 N47ebea6b233e459ba8083cb5de1c2af9 schema:isbn 978-3-211-74279-2
41 978-3-211-74280-8
42 schema:name Diophantine Approximation
43 rdf:type schema:Book
44 N58dc9a6bc5ff4ea08e6afea43442f222 schema:familyName Schlickewei
45 schema:givenName Hans Peter
46 rdf:type schema:Person
47 N5d23322b9f9b4afbb55d1ea25957148b rdf:first Nd41d8e429b1143e794d9a188ad338dc8
48 rdf:rest Na806a67f39454b9aad243d510fd1ca0d
49 N7fc2ad6a8d774a2884d7899bde4268d4 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N9d19db16055943509aacdaaa6805e2ad schema:name doi
52 schema:value 10.1007/978-3-211-74280-8_4
53 rdf:type schema:PropertyValue
54 Na1bde191a7a145409ac832df93c058ce rdf:first N58dc9a6bc5ff4ea08e6afea43442f222
55 rdf:rest N5d23322b9f9b4afbb55d1ea25957148b
56 Na4f780848f004573b4c5b882b1979545 rdf:first sg:person.015312676677.43
57 rdf:rest rdf:nil
58 Na806a67f39454b9aad243d510fd1ca0d rdf:first N2f8e3b82b677458aaaefb996c62b6ee2
59 rdf:rest rdf:nil
60 Nb2a772448c1d4d8dbc61dc6aebd421e2 schema:name dimensions_id
61 schema:value pub.1032458154
62 rdf:type schema:PropertyValue
63 Nd41d8e429b1143e794d9a188ad338dc8 schema:familyName Schmidt
64 schema:givenName Klaus
65 rdf:type schema:Person
66 Ndd8a4a07c3d3487381e3b679f694da11 rdf:first sg:person.07542764371.85
67 rdf:rest Ne3c4a738c5d247e38b8cfbac39766436
68 Ne3c4a738c5d247e38b8cfbac39766436 rdf:first sg:person.014460715127.35
69 rdf:rest Na4f780848f004573b4c5b882b1979545
70 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
71 schema:name Psychology and Cognitive Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
74 schema:name Psychology
75 rdf:type schema:DefinedTerm
76 sg:person.014460715127.35 schema:affiliation grid-institutes:grid.410413.3
77 schema:familyName Philipp
78 schema:givenName Walter
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014460715127.35
80 rdf:type schema:Person
81 sg:person.015312676677.43 schema:affiliation grid-institutes:grid.35403.31
82 schema:familyName Tichy
83 schema:givenName Robert F.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
85 rdf:type schema:Person
86 sg:person.07542764371.85 schema:affiliation grid-institutes:grid.410413.3
87 schema:familyName Berkes
88 schema:givenName István
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07542764371.85
90 rdf:type schema:Person
91 grid-institutes:grid.35403.31 schema:alternateName Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
92 schema:name Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, USA
93 rdf:type schema:Organization
94 grid-institutes:grid.410413.3 schema:alternateName Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, 8010, Graz, Austria
95 Institut für Statistik, Technische Universität Graz, Steyrergasse 17, 8010, Graz, Austria
96 schema:name Institut für Mathematik A, Technische Universität Graz, Steyrergasse 30, 8010, Graz, Austria
97 Institut für Statistik, Technische Universität Graz, Steyrergasse 17, 8010, Graz, Austria
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...