On the Diophantine Equation G n (x) = G m (y) with Q (x, y)=0 View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008

AUTHORS

Clemens Fuchs , Attila Pethő , Robert F. Tichy

ABSTRACT

Let K denote an algebraically closed field of characteristic 0, and let A0,..., Ad–1, G0,..., G d- 1 ∈ K[X] and \( \left( {Gn\left( X \right)} \right)_{n = 0}^\infty \) be a sequence of polynomials defined by the d- th order linear recurring relation

PAGES

199-209

References to SciGraph publications

  • 2002-08. Finiteness of integral values for the ratio of two linear recurrences in INVENTIONES MATHEMATICAE
  • 2002-11. On the Diophantine Equation Gn(x) = Gm(P(x)) in MONATSHEFTE FÜR MATHEMATIK
  • 1999-09. The zero multiplicity of linear recurrence sequences in ACTA MATHEMATICA
  • Book

    TITLE

    Diophantine Approximation

    ISBN

    978-3-211-74279-2
    978-3-211-74280-8

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10

    DOI

    http://dx.doi.org/10.1007/978-3-211-74280-8_10

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1022121577


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Swiss Federal Institute of Technology in Zurich", 
              "id": "https://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Departement Mathematik, ETH Z\u00fcrich, R\u00e4mistrasse 101, 8092\u00a0Z\u00fcrich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fuchs", 
            "givenName": "Clemens", 
            "id": "sg:person.011534256073.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Debrecen", 
              "id": "https://www.grid.ac/institutes/grid.7122.6", 
              "name": [
                "Faculty of Informatics, University of Debrecen, POBox12, 4010\u00a0Debrecen, Hungary"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peth\u0151", 
            "givenName": "Attila", 
            "id": "sg:person.013334020373.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Graz University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Institut f\u00fcr Analysis und Computational Number Theory, TU Graz, Steyrergasse 30/II, 8010\u00a0Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tichy", 
            "givenName": "Robert F.", 
            "id": "sg:person.015312676677.43", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002220200221", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012205538", 
              "https://doi.org/10.1007/s002220200221"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00605-002-0497-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019283551", 
              "https://doi.org/10.1007/s00605-002-0497-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-03-03325-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019352649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02392575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038230635", 
              "https://doi.org/10.1007/bf02392575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3062150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070191892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5802/jtnb.518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073141618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511542916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098698483"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008", 
        "datePublishedReg": "2008-01-01", 
        "description": "Let K denote an algebraically closed field of characteristic 0, and let A0,..., Ad\u20131, G0,..., G d- 1 \u2208 K[X] and \\( \\left( {Gn\\left( X \\right)} \\right)_{n = 0}^\\infty \\) be a sequence of polynomials defined by the d- th order linear recurring relation", 
        "editor": [
          {
            "familyName": "Schlickewei", 
            "givenName": "Hans Peter", 
            "type": "Person"
          }, 
          {
            "familyName": "Schmidt", 
            "givenName": "Klaus", 
            "type": "Person"
          }, 
          {
            "familyName": "Tichy", 
            "givenName": "Robert F.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-211-74280-8_10", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "978-3-211-74279-2", 
            "978-3-211-74280-8"
          ], 
          "name": "Diophantine Approximation", 
          "type": "Book"
        }, 
        "name": "On the Diophantine Equation G n (x) = G m (y) with Q (x, y)=0", 
        "pagination": "199-209", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-211-74280-8_10"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "696476f93cb888035943ba6d244233941a01490cf52fe69759ec5b69685c60d4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1022121577"
            ]
          }
        ], 
        "publisher": {
          "location": "Vienna", 
          "name": "Springer Vienna", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-211-74280-8_10", 
          "https://app.dimensions.ai/details/publication/pub.1022121577"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T19:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000256.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/978-3-211-74280-8_10"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10'


     

    This table displays all metadata directly associated to this object as RDF triples.

    111 TRIPLES      22 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-211-74280-8_10 schema:author N0ec6283e7a6e4c55ac5316aedef06fef
    2 schema:citation sg:pub.10.1007/bf02392575
    3 sg:pub.10.1007/s002220200221
    4 sg:pub.10.1007/s00605-002-0497-9
    5 https://doi.org/10.1017/cbo9780511542916
    6 https://doi.org/10.1090/s0002-9947-03-03325-7
    7 https://doi.org/10.2307/3062150
    8 https://doi.org/10.5802/jtnb.518
    9 schema:datePublished 2008
    10 schema:datePublishedReg 2008-01-01
    11 schema:description Let K denote an algebraically closed field of characteristic 0, and let A0,..., Ad–1, G0,..., G d- 1 ∈ K[X] and \( \left( {Gn\left( X \right)} \right)_{n = 0}^\infty \) be a sequence of polynomials defined by the d- th order linear recurring relation
    12 schema:editor N0ca29f4d56224a9280aae2cf5f1fcdd2
    13 schema:genre chapter
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N3d0529d007bc421fabffc7e81be6a143
    17 schema:name On the Diophantine Equation G n (x) = G m (y) with Q (x, y)=0
    18 schema:pagination 199-209
    19 schema:productId N7cf73c589a3b4e25be761972687617a4
    20 Ndf367a6765b94e238d63c70d3998341a
    21 Nfadc2a601cae4888b9f5e31a275b02d9
    22 schema:publisher N964e2a61810e4f10b13b7e61bf3c3f4d
    23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022121577
    24 https://doi.org/10.1007/978-3-211-74280-8_10
    25 schema:sdDatePublished 2019-04-15T19:08
    26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    27 schema:sdPublisher N378b344da7b149be938915580acb3c5e
    28 schema:url http://link.springer.com/10.1007/978-3-211-74280-8_10
    29 sgo:license sg:explorer/license/
    30 sgo:sdDataset chapters
    31 rdf:type schema:Chapter
    32 N09c36f68f51741eab2d3e3df3f887490 rdf:first Nf2d7a84189ba4cd0ad9ed760963c9791
    33 rdf:rest N67eb12d26d884e649264665dd12e46fd
    34 N0ca29f4d56224a9280aae2cf5f1fcdd2 rdf:first N9d475afcabad4689ada2e81fb20e3769
    35 rdf:rest N09c36f68f51741eab2d3e3df3f887490
    36 N0ec6283e7a6e4c55ac5316aedef06fef rdf:first sg:person.011534256073.49
    37 rdf:rest Nf2a2f1b0266a498daac4df513f75b44d
    38 N378b344da7b149be938915580acb3c5e schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N3d0529d007bc421fabffc7e81be6a143 schema:isbn 978-3-211-74279-2
    41 978-3-211-74280-8
    42 schema:name Diophantine Approximation
    43 rdf:type schema:Book
    44 N67eb12d26d884e649264665dd12e46fd rdf:first Nb54fcc86b491465fa25b0e6791f2402d
    45 rdf:rest rdf:nil
    46 N7cf73c589a3b4e25be761972687617a4 schema:name dimensions_id
    47 schema:value pub.1022121577
    48 rdf:type schema:PropertyValue
    49 N964e2a61810e4f10b13b7e61bf3c3f4d schema:location Vienna
    50 schema:name Springer Vienna
    51 rdf:type schema:Organisation
    52 N9d475afcabad4689ada2e81fb20e3769 schema:familyName Schlickewei
    53 schema:givenName Hans Peter
    54 rdf:type schema:Person
    55 Nb54fcc86b491465fa25b0e6791f2402d schema:familyName Tichy
    56 schema:givenName Robert F.
    57 rdf:type schema:Person
    58 Ndf367a6765b94e238d63c70d3998341a schema:name doi
    59 schema:value 10.1007/978-3-211-74280-8_10
    60 rdf:type schema:PropertyValue
    61 Ne46fb34755f24841b630c7a91108b301 rdf:first sg:person.015312676677.43
    62 rdf:rest rdf:nil
    63 Nf2a2f1b0266a498daac4df513f75b44d rdf:first sg:person.013334020373.46
    64 rdf:rest Ne46fb34755f24841b630c7a91108b301
    65 Nf2d7a84189ba4cd0ad9ed760963c9791 schema:familyName Schmidt
    66 schema:givenName Klaus
    67 rdf:type schema:Person
    68 Nfadc2a601cae4888b9f5e31a275b02d9 schema:name readcube_id
    69 schema:value 696476f93cb888035943ba6d244233941a01490cf52fe69759ec5b69685c60d4
    70 rdf:type schema:PropertyValue
    71 sg:person.011534256073.49 schema:affiliation https://www.grid.ac/institutes/grid.5801.c
    72 schema:familyName Fuchs
    73 schema:givenName Clemens
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
    75 rdf:type schema:Person
    76 sg:person.013334020373.46 schema:affiliation https://www.grid.ac/institutes/grid.7122.6
    77 schema:familyName Pethő
    78 schema:givenName Attila
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46
    80 rdf:type schema:Person
    81 sg:person.015312676677.43 schema:affiliation https://www.grid.ac/institutes/grid.410413.3
    82 schema:familyName Tichy
    83 schema:givenName Robert F.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
    85 rdf:type schema:Person
    86 sg:pub.10.1007/bf02392575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038230635
    87 https://doi.org/10.1007/bf02392575
    88 rdf:type schema:CreativeWork
    89 sg:pub.10.1007/s002220200221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012205538
    90 https://doi.org/10.1007/s002220200221
    91 rdf:type schema:CreativeWork
    92 sg:pub.10.1007/s00605-002-0497-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019283551
    93 https://doi.org/10.1007/s00605-002-0497-9
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1017/cbo9780511542916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698483
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1090/s0002-9947-03-03325-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019352649
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.2307/3062150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070191892
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.5802/jtnb.518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073141618
    102 rdf:type schema:CreativeWork
    103 https://www.grid.ac/institutes/grid.410413.3 schema:alternateName Graz University of Technology
    104 schema:name Institut für Analysis und Computational Number Theory, TU Graz, Steyrergasse 30/II, 8010 Graz, Austria
    105 rdf:type schema:Organization
    106 https://www.grid.ac/institutes/grid.5801.c schema:alternateName Swiss Federal Institute of Technology in Zurich
    107 schema:name Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
    108 rdf:type schema:Organization
    109 https://www.grid.ac/institutes/grid.7122.6 schema:alternateName University of Debrecen
    110 schema:name Faculty of Informatics, University of Debrecen, POBox12, 4010 Debrecen, Hungary
    111 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...