On the Diophantine Equation Gn(x) = Gm(y) with Q (x, y)=0 View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2008-01-01

AUTHORS

Clemens Fuchs , Attila Pethő , Robert F. Tichy

ABSTRACT

Let K denote an algebraically closed field of characteristic 0, and let A0,..., Ad–1, G0,..., Gd-1 ∈ K[X] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {Gn\left( X \right)} \right)_{n = 0}^\infty $$\end{document} be a sequence of polynomials defined by the d- th order linear recurring relation (1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G_{n + d} \left( X \right) = A_{d - 1} \left( X \right)G_{n + d - 1} \left( X \right) + \cdots + A_0 \left( X \right)G_n \left( X \right), for n \geqslant 0. $$\end{document} Furthermore, let P(X) ∈ K[X], deg P ≥ 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equation (2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Gn\left( X \right) = Gm\left( {P\left( X \right)} \right). $$\end{document} More... »

PAGES

199-209

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10

DOI

http://dx.doi.org/10.1007/978-3-211-74280-8_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022121577


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departement Mathematik, ETH Z\u00fcrich, R\u00e4mistrasse 101, 8092, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Departement Mathematik, ETH Z\u00fcrich, R\u00e4mistrasse 101, 8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuchs", 
        "givenName": "Clemens", 
        "id": "sg:person.011534256073.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Number Theory Research Group, Hungarian Academy of Sciences, POBox12, 4010, Debrecen, Hungary", 
          "id": "http://www.grid.ac/institutes/grid.5018.c", 
          "name": [
            "Faculty of Informatics, University of Debrecen, POBox12, 4010, Debrecen, Hungary", 
            "Number Theory Research Group, Hungarian Academy of Sciences, POBox12, 4010, Debrecen, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peth\u0151", 
        "givenName": "Attila", 
        "id": "sg:person.013334020373.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Analysis und Computational Number Theory, TU Graz, Steyrergasse 30/II, 8010, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institut f\u00fcr Analysis und Computational Number Theory, TU Graz, Steyrergasse 30/II, 8010, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tichy", 
        "givenName": "Robert F.", 
        "id": "sg:person.015312676677.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2008-01-01", 
    "datePublishedReg": "2008-01-01", 
    "description": "Let K denote an algebraically closed field of characteristic 0, and let A0,..., Ad\u20131, G0,..., Gd-1 \u2208 K[X] and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\left( {Gn\\left( X \\right)} \\right)_{n = 0}^\\infty  \n$$\\end{document} be a sequence of polynomials defined by the d- th order linear recurring relation (1)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\nG_{n + d} \\left( X \\right) = A_{d - 1} \\left( X \\right)G_{n + d - 1} \\left( X \\right) +  \\cdots  + A_0 \\left( X \\right)G_n \\left( X \\right),   for n \\geqslant 0.\n$$\\end{document} Furthermore, let P(X) \u2208 K[X], deg P \u2265 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equation (2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\nGn\\left( X \\right) = Gm\\left( {P\\left( X \\right)} \\right).\n$$\\end{document}", 
    "editor": [
      {
        "familyName": "Schlickewei", 
        "givenName": "Hans Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Schmidt", 
        "givenName": "Klaus", 
        "type": "Person"
      }, 
      {
        "familyName": "Tichy", 
        "givenName": "Robert F.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-211-74280-8_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-211-74279-2", 
        "978-3-211-74280-8"
      ], 
      "name": "Diophantine Approximation", 
      "type": "Book"
    }, 
    "keywords": [
      "AD-1", 
      "gD-1", 
      "G0", 
      "number", 
      "questions", 
      "relation", 
      "sequence", 
      "field", 
      "solution", 
      "A0", 
      "equations", 
      "sequence of polynomials", 
      "number of solutions", 
      "polynomials", 
      "Diophantine equations", 
      "th order linear recurring relation", 
      "order linear recurring relation", 
      "linear recurring relations", 
      "recurring relation", 
      "deg P"
    ], 
    "name": "On the Diophantine Equation Gn(x) = Gm(y) with Q (x, y)=0", 
    "pagination": "199-209", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022121577"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-211-74280-8_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-211-74280-8_10", 
      "https://app.dimensions.ai/details/publication/pub.1022121577"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T18:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_374.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-211-74280-8_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-211-74280-8_10'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      45 URIs      38 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-211-74280-8_10 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N29643720065e4046a0ae832bacfcedfa
4 schema:datePublished 2008-01-01
5 schema:datePublishedReg 2008-01-01
6 schema:description Let K denote an algebraically closed field of characteristic 0, and let A0,..., Ad–1, G0,..., Gd-1 ∈ K[X] and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( {Gn\left( X \right)} \right)_{n = 0}^\infty $$\end{document} be a sequence of polynomials defined by the d- th order linear recurring relation (1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G_{n + d} \left( X \right) = A_{d - 1} \left( X \right)G_{n + d - 1} \left( X \right) + \cdots + A_0 \left( X \right)G_n \left( X \right), for n \geqslant 0. $$\end{document} Furthermore, let P(X) ∈ K[X], deg P ≥ 1. Recently, we investigated the question, what can be said about the number of solutions of the Diophantine equation (2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Gn\left( X \right) = Gm\left( {P\left( X \right)} \right). $$\end{document}
7 schema:editor Nab3fc42a8e7c488f8fa3acbb624eb37c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nd8afee369dfa4591bff3f7b8454414d1
12 schema:keywords A0
13 AD-1
14 Diophantine equations
15 G0
16 deg P
17 equations
18 field
19 gD-1
20 linear recurring relations
21 number
22 number of solutions
23 order linear recurring relation
24 polynomials
25 questions
26 recurring relation
27 relation
28 sequence
29 sequence of polynomials
30 solution
31 th order linear recurring relation
32 schema:name On the Diophantine Equation Gn(x) = Gm(y) with Q (x, y)=0
33 schema:pagination 199-209
34 schema:productId N39c7424bffd14ec3bf0ada3d10e1475b
35 Nbaba048f4d2d4c3b9f148b09d4904b0f
36 schema:publisher N01997b1441ae49dd92bfdc9d4500f1ad
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022121577
38 https://doi.org/10.1007/978-3-211-74280-8_10
39 schema:sdDatePublished 2021-11-01T18:58
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nd00574fd560241a0802df455cd68e550
42 schema:url https://doi.org/10.1007/978-3-211-74280-8_10
43 sgo:license sg:explorer/license/
44 sgo:sdDataset chapters
45 rdf:type schema:Chapter
46 N01997b1441ae49dd92bfdc9d4500f1ad schema:name Springer Nature
47 rdf:type schema:Organisation
48 N14624f5eb9364812a6d356193a8ad2ce rdf:first sg:person.013334020373.46
49 rdf:rest Nc71137a86ed44b3dbe1856c89ddbd185
50 N29643720065e4046a0ae832bacfcedfa rdf:first sg:person.011534256073.49
51 rdf:rest N14624f5eb9364812a6d356193a8ad2ce
52 N39c7424bffd14ec3bf0ada3d10e1475b schema:name dimensions_id
53 schema:value pub.1022121577
54 rdf:type schema:PropertyValue
55 N3f2ea51725134dc79e5bbdb45fec51f5 rdf:first Nd03f04215c87445ab5cc899cd37ba55c
56 rdf:rest N8ac02089f97e44bf9193654384d13b79
57 N46fc584fef1b4e08820648cf58dd2133 schema:familyName Tichy
58 schema:givenName Robert F.
59 rdf:type schema:Person
60 N8ac02089f97e44bf9193654384d13b79 rdf:first N46fc584fef1b4e08820648cf58dd2133
61 rdf:rest rdf:nil
62 Nab3fc42a8e7c488f8fa3acbb624eb37c rdf:first Nd732d440658346a5bbfc2ddd41b93f01
63 rdf:rest N3f2ea51725134dc79e5bbdb45fec51f5
64 Nbaba048f4d2d4c3b9f148b09d4904b0f schema:name doi
65 schema:value 10.1007/978-3-211-74280-8_10
66 rdf:type schema:PropertyValue
67 Nc71137a86ed44b3dbe1856c89ddbd185 rdf:first sg:person.015312676677.43
68 rdf:rest rdf:nil
69 Nd00574fd560241a0802df455cd68e550 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Nd03f04215c87445ab5cc899cd37ba55c schema:familyName Schmidt
72 schema:givenName Klaus
73 rdf:type schema:Person
74 Nd732d440658346a5bbfc2ddd41b93f01 schema:familyName Schlickewei
75 schema:givenName Hans Peter
76 rdf:type schema:Person
77 Nd8afee369dfa4591bff3f7b8454414d1 schema:isbn 978-3-211-74279-2
78 978-3-211-74280-8
79 schema:name Diophantine Approximation
80 rdf:type schema:Book
81 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
82 schema:name Medical and Health Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
85 schema:name Public Health and Health Services
86 rdf:type schema:DefinedTerm
87 sg:person.011534256073.49 schema:affiliation grid-institutes:grid.5801.c
88 schema:familyName Fuchs
89 schema:givenName Clemens
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011534256073.49
91 rdf:type schema:Person
92 sg:person.013334020373.46 schema:affiliation grid-institutes:grid.5018.c
93 schema:familyName Pethő
94 schema:givenName Attila
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334020373.46
96 rdf:type schema:Person
97 sg:person.015312676677.43 schema:affiliation grid-institutes:grid.410413.3
98 schema:familyName Tichy
99 schema:givenName Robert F.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015312676677.43
101 rdf:type schema:Person
102 grid-institutes:grid.410413.3 schema:alternateName Institut für Analysis und Computational Number Theory, TU Graz, Steyrergasse 30/II, 8010, Graz, Austria
103 schema:name Institut für Analysis und Computational Number Theory, TU Graz, Steyrergasse 30/II, 8010, Graz, Austria
104 rdf:type schema:Organization
105 grid-institutes:grid.5018.c schema:alternateName Number Theory Research Group, Hungarian Academy of Sciences, POBox12, 4010, Debrecen, Hungary
106 schema:name Faculty of Informatics, University of Debrecen, POBox12, 4010, Debrecen, Hungary
107 Number Theory Research Group, Hungarian Academy of Sciences, POBox12, 4010, Debrecen, Hungary
108 rdf:type schema:Organization
109 grid-institutes:grid.5801.c schema:alternateName Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092, Zürich, Switzerland
110 schema:name Departement Mathematik, ETH Zürich, Rämistrasse 101, 8092, Zürich, Switzerland
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...