On the Signatures of Selfadjoint Pencils View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

Aad Dijksma , Aurelian Gheondea

ABSTRACT

For bounded selfadjoint operators F and G on a Hilbert space with , we give formulae and estimates of the positive/negative signatures of the pencil . For example, we prove that for all real λ,.

PAGES

112-136

Book

TITLE

Operator Theory and Boundary Eigenvalue Problems

ISBN

978-3-0348-9909-3
978-3-0348-9106-6

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-9106-6_8

DOI

http://dx.doi.org/10.1007/978-3-0348-9106-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020867641


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institutul de Matematic\u0103, Academiei Rom\u00e2ne, C.P. 1-764, 70700, Bucure\u015fti, Rom\u00e2nia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gheondea", 
        "givenName": "Aurelian", 
        "id": "sg:person.016700571527.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0024-3795(93)90336-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001600352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01200290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013761441", 
          "https://doi.org/10.1007/bf01200290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01200290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013761441", 
          "https://doi.org/10.1007/bf01200290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(87)90126-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023882016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8575-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040296755", 
          "https://doi.org/10.1007/978-3-0348-8575-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8575-1_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040296755", 
          "https://doi.org/10.1007/978-3-0348-8575-1_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0072441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041863154", 
          "https://doi.org/10.1007/bfb0072441"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "For bounded selfadjoint operators F and G on a Hilbert space with , we give formulae and estimates of the positive/negative signatures of the pencil . For example, we prove that for all real \u03bb,.", 
    "editor": [
      {
        "familyName": "Gohberg", 
        "givenName": "I.", 
        "type": "Person"
      }, 
      {
        "familyName": "Langer", 
        "givenName": "H.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-9106-6_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9909-3", 
        "978-3-0348-9106-6"
      ], 
      "name": "Operator Theory and Boundary Eigenvalue Problems", 
      "type": "Book"
    }, 
    "name": "On the Signatures of Selfadjoint Pencils", 
    "pagination": "112-136", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020867641"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-9106-6_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "636cf9ca28b8bc239d68eab969b56cfd962442e586313b08c8e82f3f87b9b93a"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-9106-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1020867641"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119714_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-9106-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-9106-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-9106-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-9106-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-9106-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      22 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-9106-6_8 schema:author Nff1dea82f1fb48ebb694f8ecb8e58ea5
2 schema:citation sg:pub.10.1007/978-3-0348-8575-1_7
3 sg:pub.10.1007/978-3-642-65567-8
4 sg:pub.10.1007/bf01200290
5 sg:pub.10.1007/bfb0072441
6 https://doi.org/10.1016/0022-1236(87)90126-1
7 https://doi.org/10.1016/0024-3795(93)90336-m
8 schema:datePublished 1995
9 schema:datePublishedReg 1995-01-01
10 schema:description For bounded selfadjoint operators F and G on a Hilbert space with , we give formulae and estimates of the positive/negative signatures of the pencil . For example, we prove that for all real λ,.
11 schema:editor N70cf34e1f6d54dd68a846821fcf4b5dc
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N8015cc54987c4201a38c7865ce31b78f
16 schema:name On the Signatures of Selfadjoint Pencils
17 schema:pagination 112-136
18 schema:productId N3344bb244e234163b2e832cd03e6927e
19 N3b0256e96b4841eb8b49d5e70b2450ec
20 N8e5be77ac5214b3c88af02de57609cf2
21 schema:publisher N884530feff534b1fb5aca73a7ffb4bef
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020867641
23 https://doi.org/10.1007/978-3-0348-9106-6_8
24 schema:sdDatePublished 2019-04-16T09:39
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N512e6cdd27484f23ad080e6c1c9586a7
27 schema:url https://link.springer.com/10.1007%2F978-3-0348-9106-6_8
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N12a1c9b52b804e7a861e36cb5ba79eee schema:familyName Gohberg
32 schema:givenName I.
33 rdf:type schema:Person
34 N3344bb244e234163b2e832cd03e6927e schema:name dimensions_id
35 schema:value pub.1020867641
36 rdf:type schema:PropertyValue
37 N3b0256e96b4841eb8b49d5e70b2450ec schema:name readcube_id
38 schema:value 636cf9ca28b8bc239d68eab969b56cfd962442e586313b08c8e82f3f87b9b93a
39 rdf:type schema:PropertyValue
40 N512e6cdd27484f23ad080e6c1c9586a7 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N682c50e80ead4c8c98c8551b9ce3dfe5 schema:familyName Langer
43 schema:givenName H.
44 rdf:type schema:Person
45 N70cf34e1f6d54dd68a846821fcf4b5dc rdf:first N12a1c9b52b804e7a861e36cb5ba79eee
46 rdf:rest Nee65aea442bf45b69f7e6cee8a4c372d
47 N786289109e614a7ab070c1875f15804c rdf:first sg:person.016700571527.26
48 rdf:rest rdf:nil
49 N8015cc54987c4201a38c7865ce31b78f schema:isbn 978-3-0348-9106-6
50 978-3-0348-9909-3
51 schema:name Operator Theory and Boundary Eigenvalue Problems
52 rdf:type schema:Book
53 N884530feff534b1fb5aca73a7ffb4bef schema:location Basel
54 schema:name Birkhäuser Basel
55 rdf:type schema:Organisation
56 N8e5be77ac5214b3c88af02de57609cf2 schema:name doi
57 schema:value 10.1007/978-3-0348-9106-6_8
58 rdf:type schema:PropertyValue
59 Nc5f474ca9721451baf66aa9859993aa2 schema:name Institutul de Matematică, Academiei Române, C.P. 1-764, 70700, Bucureşti, România
60 rdf:type schema:Organization
61 Nee65aea442bf45b69f7e6cee8a4c372d rdf:first N682c50e80ead4c8c98c8551b9ce3dfe5
62 rdf:rest rdf:nil
63 Nff1dea82f1fb48ebb694f8ecb8e58ea5 rdf:first sg:person.013762723211.39
64 rdf:rest N786289109e614a7ab070c1875f15804c
65 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
66 schema:familyName Dijksma
67 schema:givenName Aad
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
69 rdf:type schema:Person
70 sg:person.016700571527.26 schema:affiliation Nc5f474ca9721451baf66aa9859993aa2
71 schema:familyName Gheondea
72 schema:givenName Aurelian
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26
74 rdf:type schema:Person
75 sg:pub.10.1007/978-3-0348-8575-1_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040296755
76 https://doi.org/10.1007/978-3-0348-8575-1_7
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
79 https://doi.org/10.1007/978-3-642-65567-8
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01200290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013761441
82 https://doi.org/10.1007/bf01200290
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/bfb0072441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041863154
85 https://doi.org/10.1007/bfb0072441
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0022-1236(87)90126-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023882016
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0024-3795(93)90336-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1001600352
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
92 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...