Diagonals of the Powers of an Operator on a Banach Lattice View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1995

AUTHORS

W. A. J. Luxemburg , B. de Pagter , A. R. Schep

ABSTRACT

This paper is devoted to a detailed study of the properties of the band projection D of the complete lattice ordered algebra −r(E) of the regular (or order bounded) operators of a Dedekind complete Banach lattice E onto the center Z(E) of E. We recall that the center Z(E) is the commutative subalgebra of −r(E) of all T satisfying |T| ≤ λI, where I is the identity operator. In the finite dimensional case, with respect to the standard numerical basis, Z(E) is the algebra of all diagonal matrices. For this reason the band projection D is called the diagonal map of E. More... »

PAGES

223-273

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-9076-2_13

DOI

http://dx.doi.org/10.1007/978-3-0348-9076-2_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026097678


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, California Institute of Technology, 91125, Pasadena, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.20861.3d", 
          "name": [
            "Department of Mathematics, California Institute of Technology, 91125, Pasadena, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luxemburg", 
        "givenName": "W. A. J.", 
        "id": "sg:person.016621530177.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016621530177.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Delft University of Technology, P.O. Box 356, 2600, AJ Delft, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5292.c", 
          "name": [
            "Department of Mathematics, Delft University of Technology, P.O. Box 356, 2600, AJ Delft, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "de Pagter", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, University of South Carolina, 29208, Columbia, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.254567.7", 
          "name": [
            "Department of Mathematics, University of South Carolina, 29208, Columbia, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schep", 
        "givenName": "A. R.", 
        "id": "sg:person.015021450331.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015021450331.82"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1995", 
    "datePublishedReg": "1995-01-01", 
    "description": "This paper is devoted to a detailed study of the properties of the band projection D of the complete lattice ordered algebra \u2212r(E) of the regular (or order bounded) operators of a Dedekind complete Banach lattice E onto the center Z(E) of E. We recall that the center Z(E) is the commutative subalgebra of \u2212r(E) of all T satisfying |T| \u2264 \u03bbI, where I is the identity operator. In the finite dimensional case, with respect to the standard numerical basis, Z(E) is the algebra of all diagonal matrices. For this reason the band projection D is called the diagonal map of E.", 
    "editor": [
      {
        "familyName": "Huijsmans", 
        "givenName": "C. B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaashoek", 
        "givenName": "M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Luxemburg", 
        "givenName": "W. A. J.", 
        "type": "Person"
      }, 
      {
        "familyName": "de Pagter", 
        "givenName": "B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-9076-2_13", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9896-6", 
        "978-3-0348-9076-2"
      ], 
      "name": "Operator Theory in Function Spaces and Banach Lattices", 
      "type": "Book"
    }, 
    "keywords": [
      "finite dimensional case", 
      "commutative subalgebra", 
      "dimensional case", 
      "identity operator", 
      "diagonal map", 
      "diagonal matrix", 
      "Banach lattice E", 
      "Banach lattices", 
      "complete lattice", 
      "regular operators", 
      "algebra", 
      "operators", 
      "lattice E", 
      "subalgebra", 
      "numerical basis", 
      "lattice", 
      "diagonals", 
      "matrix", 
      "maps", 
      "power", 
      "respect", 
      "properties", 
      "cases", 
      "detailed study", 
      "basis", 
      "center", 
      "reasons", 
      "study", 
      "paper", 
      "band projection D", 
      "projection D", 
      "Dedekind complete Banach lattice E", 
      "complete Banach lattice E", 
      "standard numerical basis"
    ], 
    "name": "Diagonals of the Powers of an Operator on a Banach Lattice", 
    "pagination": "223-273", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026097678"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-9076-2_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-9076-2_13", 
      "https://app.dimensions.ai/details/publication/pub.1026097678"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-11-01T19:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/chapter/chapter_61.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-0348-9076-2_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-9076-2_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-9076-2_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-9076-2_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-9076-2_13'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      23 PREDICATES      60 URIs      53 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-9076-2_13 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N39c8c9ccd2734d00907d399a66bc8cc0
4 schema:datePublished 1995
5 schema:datePublishedReg 1995-01-01
6 schema:description This paper is devoted to a detailed study of the properties of the band projection D of the complete lattice ordered algebra −r(E) of the regular (or order bounded) operators of a Dedekind complete Banach lattice E onto the center Z(E) of E. We recall that the center Z(E) is the commutative subalgebra of −r(E) of all T satisfying |T| ≤ λI, where I is the identity operator. In the finite dimensional case, with respect to the standard numerical basis, Z(E) is the algebra of all diagonal matrices. For this reason the band projection D is called the diagonal map of E.
7 schema:editor N89c64f6dd081466c9af165cab530d7c9
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nef0d1a9126cb41c9bbc041d4c6bbf0dc
12 schema:keywords Banach lattice E
13 Banach lattices
14 Dedekind complete Banach lattice E
15 algebra
16 band projection D
17 basis
18 cases
19 center
20 commutative subalgebra
21 complete Banach lattice E
22 complete lattice
23 detailed study
24 diagonal map
25 diagonal matrix
26 diagonals
27 dimensional case
28 finite dimensional case
29 identity operator
30 lattice
31 lattice E
32 maps
33 matrix
34 numerical basis
35 operators
36 paper
37 power
38 projection D
39 properties
40 reasons
41 regular operators
42 respect
43 standard numerical basis
44 study
45 subalgebra
46 schema:name Diagonals of the Powers of an Operator on a Banach Lattice
47 schema:pagination 223-273
48 schema:productId N06717ec1969942479bfcd8f5f687b692
49 N6f7d76cd07c04033a62a59dd8869118c
50 schema:publisher Na8432f886ceb44f6933932fa7234a6ec
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026097678
52 https://doi.org/10.1007/978-3-0348-9076-2_13
53 schema:sdDatePublished 2021-11-01T19:02
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nc89e2aa6809845b59c19ecf4b7079458
56 schema:url https://doi.org/10.1007/978-3-0348-9076-2_13
57 sgo:license sg:explorer/license/
58 sgo:sdDataset chapters
59 rdf:type schema:Chapter
60 N06717ec1969942479bfcd8f5f687b692 schema:name dimensions_id
61 schema:value pub.1026097678
62 rdf:type schema:PropertyValue
63 N39c8c9ccd2734d00907d399a66bc8cc0 rdf:first sg:person.016621530177.98
64 rdf:rest N40265b1bf0a34090ae74a21d1fb3a5ca
65 N40265b1bf0a34090ae74a21d1fb3a5ca rdf:first N78923e2774d240d0a8f67e53aa430369
66 rdf:rest N7f0467f3909a490eb3e99a506b0f2916
67 N496c23fae78047668e8251e432be465f schema:familyName de Pagter
68 schema:givenName B.
69 rdf:type schema:Person
70 N5e6a9268f22b4072b22a2fa40a0c479c rdf:first N496c23fae78047668e8251e432be465f
71 rdf:rest rdf:nil
72 N66976c1a95a2415d966efb19f5ac5f91 rdf:first Nb396f4468d394b9ba344353404be2bad
73 rdf:rest N5e6a9268f22b4072b22a2fa40a0c479c
74 N6f7d76cd07c04033a62a59dd8869118c schema:name doi
75 schema:value 10.1007/978-3-0348-9076-2_13
76 rdf:type schema:PropertyValue
77 N78923e2774d240d0a8f67e53aa430369 schema:affiliation grid-institutes:grid.5292.c
78 schema:familyName de Pagter
79 schema:givenName B.
80 rdf:type schema:Person
81 N7f0467f3909a490eb3e99a506b0f2916 rdf:first sg:person.015021450331.82
82 rdf:rest rdf:nil
83 N7faf2b50fc514e5bafdea551c5ea38e2 rdf:first N8c66146d96114f0480dc49aa3c84c1d8
84 rdf:rest N66976c1a95a2415d966efb19f5ac5f91
85 N89c64f6dd081466c9af165cab530d7c9 rdf:first Ne3d044878a6f48319076a9fe8b750665
86 rdf:rest N7faf2b50fc514e5bafdea551c5ea38e2
87 N8c66146d96114f0480dc49aa3c84c1d8 schema:familyName Kaashoek
88 schema:givenName M. A.
89 rdf:type schema:Person
90 Na8432f886ceb44f6933932fa7234a6ec schema:name Springer Nature
91 rdf:type schema:Organisation
92 Nb396f4468d394b9ba344353404be2bad schema:familyName Luxemburg
93 schema:givenName W. A. J.
94 rdf:type schema:Person
95 Nc89e2aa6809845b59c19ecf4b7079458 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Ne3d044878a6f48319076a9fe8b750665 schema:familyName Huijsmans
98 schema:givenName C. B.
99 rdf:type schema:Person
100 Nef0d1a9126cb41c9bbc041d4c6bbf0dc schema:isbn 978-3-0348-9076-2
101 978-3-0348-9896-6
102 schema:name Operator Theory in Function Spaces and Banach Lattices
103 rdf:type schema:Book
104 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
105 schema:name Mathematical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
108 schema:name Pure Mathematics
109 rdf:type schema:DefinedTerm
110 sg:person.015021450331.82 schema:affiliation grid-institutes:grid.254567.7
111 schema:familyName Schep
112 schema:givenName A. R.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015021450331.82
114 rdf:type schema:Person
115 sg:person.016621530177.98 schema:affiliation grid-institutes:grid.20861.3d
116 schema:familyName Luxemburg
117 schema:givenName W. A. J.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016621530177.98
119 rdf:type schema:Person
120 grid-institutes:grid.20861.3d schema:alternateName Department of Mathematics, California Institute of Technology, 91125, Pasadena, CA, USA
121 schema:name Department of Mathematics, California Institute of Technology, 91125, Pasadena, CA, USA
122 rdf:type schema:Organization
123 grid-institutes:grid.254567.7 schema:alternateName Department of Mathematics, University of South Carolina, 29208, Columbia, SC, USA
124 schema:name Department of Mathematics, University of South Carolina, 29208, Columbia, SC, USA
125 rdf:type schema:Organization
126 grid-institutes:grid.5292.c schema:alternateName Department of Mathematics, Delft University of Technology, P.O. Box 356, 2600, AJ Delft, The Netherlands
127 schema:name Department of Mathematics, Delft University of Technology, P.O. Box 356, 2600, AJ Delft, The Netherlands
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...