Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Aad Dijksma , Heinz Langer

ABSTRACT

We consider a scalar Nevanlinna-Pick interpolation problem with finitely many data and assume that the Pick matrix P is invertible and has k negative eigenvalues. We look for solutions of this problem in the class of meromorphic functions whose Nevanlinna kernel has k negative squares. The set of these solutions can be written as a fractional linear transformation of a parameter in the class of Nevanlinna functions, much as in the case K = 0. But now not the whole Nevanlinna class can be used as a parameter set. Our results are obtained through the characterization of the selfadjoint extensions of a symmetric operator in a Pontryagin space with both defect numbers equal to 1 in terms of a so called it-resolvent matrix. More... »

PAGES

69-91

Book

TITLE

Topics in Interpolation Theory

ISBN

978-3-0348-9838-6
978-3-0348-8944-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4

DOI

http://dx.doi.org/10.1007/978-3-0348-8944-5_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015755621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Unversity of Groningen, P.O. Box 800, 9700 AV\u00a0Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Department of Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19931610110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025837130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-3577(91)90005-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032234370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035417758"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "We consider a scalar Nevanlinna-Pick interpolation problem with finitely many data and assume that the Pick matrix P is invertible and has k negative eigenvalues. We look for solutions of this problem in the class of meromorphic functions whose Nevanlinna kernel has k negative squares. The set of these solutions can be written as a fractional linear transformation of a parameter in the class of Nevanlinna functions, much as in the case K = 0. But now not the whole Nevanlinna class can be used as a parameter set. Our results are obtained through the characterization of the selfadjoint extensions of a symmetric operator in a Pontryagin space with both defect numbers equal to 1 in terms of a so called it-resolvent matrix.", 
    "editor": [
      {
        "familyName": "Dym", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Katsnelson", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Fritzsche", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kirstein", 
        "givenName": "B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8944-5_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9838-6", 
        "978-3-0348-8944-5"
      ], 
      "name": "Topics in Interpolation Theory", 
      "type": "Book"
    }, 
    "name": "Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions", 
    "pagination": "69-91", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8944-5_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b11fb3e5da78f41d180aac5a8559d9daa46a46bb50aaca2a1da230b31fbee24"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015755621"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8944-5_4", 
      "https://app.dimensions.ai/details/publication/pub.1015755621"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-8944-5_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8944-5_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Neae1e17959e34d54a282565d20726bec
4 schema:citation sg:pub.10.1007/bf01691925
5 https://doi.org/10.1002/mana.19931610110
6 https://doi.org/10.1016/0019-3577(91)90005-r
7 https://doi.org/10.1016/0022-1236(78)90064-2
8 schema:datePublished 1997
9 schema:datePublishedReg 1997-01-01
10 schema:description We consider a scalar Nevanlinna-Pick interpolation problem with finitely many data and assume that the Pick matrix P is invertible and has k negative eigenvalues. We look for solutions of this problem in the class of meromorphic functions whose Nevanlinna kernel has k negative squares. The set of these solutions can be written as a fractional linear transformation of a parameter in the class of Nevanlinna functions, much as in the case K = 0. But now not the whole Nevanlinna class can be used as a parameter set. Our results are obtained through the characterization of the selfadjoint extensions of a symmetric operator in a Pontryagin space with both defect numbers equal to 1 in terms of a so called it-resolvent matrix.
11 schema:editor N286ef2143c554a4d839a7ce0c11a9e13
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N44d5e14a515647529c8f2733fb5342fd
16 schema:name Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions
17 schema:pagination 69-91
18 schema:productId N19be3170136a4f419827b9a804ede68d
19 N90b5ee206d74414caa4952a49adfc54e
20 Ncafd9587c91d44e297c5bfa02ec12639
21 schema:publisher N5e9e6d0160ec4d339ebd1168c6eec0bc
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015755621
23 https://doi.org/10.1007/978-3-0348-8944-5_4
24 schema:sdDatePublished 2019-04-15T10:32
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N435b7966ca3e4bb5a878056c1fcd9219
27 schema:url http://link.springer.com/10.1007/978-3-0348-8944-5_4
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N19be3170136a4f419827b9a804ede68d schema:name doi
32 schema:value 10.1007/978-3-0348-8944-5_4
33 rdf:type schema:PropertyValue
34 N1f7bff5216174881a869e092e3c2bdaa rdf:first Nfcb8f780e14d4845b3dc8f7a021d118d
35 rdf:rest N2e0b8cb3688245ce88229b31d718b8de
36 N286ef2143c554a4d839a7ce0c11a9e13 rdf:first N2b3618b8f4394976aeb93dda942b636e
37 rdf:rest N1f7bff5216174881a869e092e3c2bdaa
38 N2b3618b8f4394976aeb93dda942b636e schema:familyName Dym
39 schema:givenName H.
40 rdf:type schema:Person
41 N2e0b8cb3688245ce88229b31d718b8de rdf:first N9b45e01f22cc4330b523388dc4930771
42 rdf:rest N5a56f5294a62414a9297e307e66c1730
43 N435b7966ca3e4bb5a878056c1fcd9219 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N44d5e14a515647529c8f2733fb5342fd schema:isbn 978-3-0348-8944-5
46 978-3-0348-9838-6
47 schema:name Topics in Interpolation Theory
48 rdf:type schema:Book
49 N4745fb41999c4112a0fb1ef860ff6803 rdf:first sg:person.07450173411.71
50 rdf:rest rdf:nil
51 N5a56f5294a62414a9297e307e66c1730 rdf:first N6d8107919d204d8793293dedb76a8155
52 rdf:rest rdf:nil
53 N5e9e6d0160ec4d339ebd1168c6eec0bc schema:location Basel
54 schema:name Birkhäuser Basel
55 rdf:type schema:Organisation
56 N6d8107919d204d8793293dedb76a8155 schema:familyName Kirstein
57 schema:givenName B.
58 rdf:type schema:Person
59 N90b5ee206d74414caa4952a49adfc54e schema:name readcube_id
60 schema:value 4b11fb3e5da78f41d180aac5a8559d9daa46a46bb50aaca2a1da230b31fbee24
61 rdf:type schema:PropertyValue
62 N9b45e01f22cc4330b523388dc4930771 schema:familyName Fritzsche
63 schema:givenName B.
64 rdf:type schema:Person
65 Nc50ff4914e444905a946bdcd52068596 schema:name Department of Mathematics, Unversity of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
66 rdf:type schema:Organization
67 Ncafd9587c91d44e297c5bfa02ec12639 schema:name dimensions_id
68 schema:value pub.1015755621
69 rdf:type schema:PropertyValue
70 Neae1e17959e34d54a282565d20726bec rdf:first sg:person.013762723211.39
71 rdf:rest N4745fb41999c4112a0fb1ef860ff6803
72 Nfcb8f780e14d4845b3dc8f7a021d118d schema:familyName Katsnelson
73 schema:givenName V.
74 rdf:type schema:Person
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:person.013762723211.39 schema:affiliation Nc50ff4914e444905a946bdcd52068596
82 schema:familyName Dijksma
83 schema:givenName Aad
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
85 rdf:type schema:Person
86 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
87 schema:familyName Langer
88 schema:givenName Heinz
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
90 rdf:type schema:Person
91 sg:pub.10.1007/bf01691925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019968975
92 https://doi.org/10.1007/bf01691925
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/mana.19931610110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025837130
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0019-3577(91)90005-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1032234370
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0022-1236(78)90064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035417758
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
101 schema:name Department of Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...