Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1997

AUTHORS

Aad Dijksma , Heinz Langer

ABSTRACT

We consider a scalar Nevanlinna-Pick interpolation problem with finitely many data and assume that the Pick matrix P is invertible and has k negative eigenvalues. We look for solutions of this problem in the class of meromorphic functions whose Nevanlinna kernel has k negative squares. The set of these solutions can be written as a fractional linear transformation of a parameter in the class of Nevanlinna functions, much as in the case K = 0. But now not the whole Nevanlinna class can be used as a parameter set. Our results are obtained through the characterization of the selfadjoint extensions of a symmetric operator in a Pontryagin space with both defect numbers equal to 1 in terms of a so called it-resolvent matrix. More... »

PAGES

69-91

References to SciGraph publications

Book

TITLE

Topics in Interpolation Theory

ISBN

978-3-0348-9838-6
978-3-0348-8944-5

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4

DOI

http://dx.doi.org/10.1007/978-3-0348-8944-5_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015755621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Mathematics, Unversity of Groningen, P.O. Box 800, 9700 AV\u00a0Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Department of Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040\u00a0Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01691925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019968975", 
          "https://doi.org/10.1007/bf01691925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19931610110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025837130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-3577(91)90005-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032234370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035417758"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997", 
    "datePublishedReg": "1997-01-01", 
    "description": "We consider a scalar Nevanlinna-Pick interpolation problem with finitely many data and assume that the Pick matrix P is invertible and has k negative eigenvalues. We look for solutions of this problem in the class of meromorphic functions whose Nevanlinna kernel has k negative squares. The set of these solutions can be written as a fractional linear transformation of a parameter in the class of Nevanlinna functions, much as in the case K = 0. But now not the whole Nevanlinna class can be used as a parameter set. Our results are obtained through the characterization of the selfadjoint extensions of a symmetric operator in a Pontryagin space with both defect numbers equal to 1 in terms of a so called it-resolvent matrix.", 
    "editor": [
      {
        "familyName": "Dym", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Katsnelson", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Fritzsche", 
        "givenName": "B.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kirstein", 
        "givenName": "B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8944-5_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9838-6", 
        "978-3-0348-8944-5"
      ], 
      "name": "Topics in Interpolation Theory", 
      "type": "Book"
    }, 
    "name": "Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions", 
    "pagination": "69-91", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8944-5_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b11fb3e5da78f41d180aac5a8559d9daa46a46bb50aaca2a1da230b31fbee24"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015755621"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8944-5_4", 
      "https://app.dimensions.ai/details/publication/pub.1015755621"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000252.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-8944-5_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8944-5_4'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8944-5_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2116cd6f911f46afa2c0fbc13f958676
4 schema:citation sg:pub.10.1007/bf01691925
5 https://doi.org/10.1002/mana.19931610110
6 https://doi.org/10.1016/0019-3577(91)90005-r
7 https://doi.org/10.1016/0022-1236(78)90064-2
8 schema:datePublished 1997
9 schema:datePublishedReg 1997-01-01
10 schema:description We consider a scalar Nevanlinna-Pick interpolation problem with finitely many data and assume that the Pick matrix P is invertible and has k negative eigenvalues. We look for solutions of this problem in the class of meromorphic functions whose Nevanlinna kernel has k negative squares. The set of these solutions can be written as a fractional linear transformation of a parameter in the class of Nevanlinna functions, much as in the case K = 0. But now not the whole Nevanlinna class can be used as a parameter set. Our results are obtained through the characterization of the selfadjoint extensions of a symmetric operator in a Pontryagin space with both defect numbers equal to 1 in terms of a so called it-resolvent matrix.
11 schema:editor Na025078860064c5d80b74e67795fd3ce
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N0059683284b64912be26ad5a106ce6fa
16 schema:name Notes on a Nevanlinna-Pick interpolation problem for generalized Nevanlinna functions
17 schema:pagination 69-91
18 schema:productId N3354065f84d34faa86158419877da636
19 N9e7d41bfc58345e2ba5452cd28cb0668
20 Ncc3d319819e94ab59c2c5d84d9e47fd6
21 schema:publisher Nc16230a1aca14c908ba16135915b0da2
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015755621
23 https://doi.org/10.1007/978-3-0348-8944-5_4
24 schema:sdDatePublished 2019-04-15T10:32
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nd83e6db13d934f928a816c4bcf802efa
27 schema:url http://link.springer.com/10.1007/978-3-0348-8944-5_4
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N0059683284b64912be26ad5a106ce6fa schema:isbn 978-3-0348-8944-5
32 978-3-0348-9838-6
33 schema:name Topics in Interpolation Theory
34 rdf:type schema:Book
35 N2116cd6f911f46afa2c0fbc13f958676 rdf:first sg:person.013762723211.39
36 rdf:rest N36d8fbefa95e4aa1a75d53695119f7f7
37 N3354065f84d34faa86158419877da636 schema:name dimensions_id
38 schema:value pub.1015755621
39 rdf:type schema:PropertyValue
40 N36d8fbefa95e4aa1a75d53695119f7f7 rdf:first sg:person.07450173411.71
41 rdf:rest rdf:nil
42 N3b858a765ede48069df6d8b79010efe7 rdf:first Nb9bc15b2f706479ba149ff299c5b9c22
43 rdf:rest rdf:nil
44 N3c2d074706284c62b7d8aac697d39879 schema:familyName Fritzsche
45 schema:givenName B.
46 rdf:type schema:Person
47 N855de0767e434c0daccb8c6a5b2e6375 schema:name Department of Mathematics, Unversity of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
48 rdf:type schema:Organization
49 N9017694eb0224f95b04f0ea19d9b8fd1 schema:familyName Katsnelson
50 schema:givenName V.
51 rdf:type schema:Person
52 N9e7d41bfc58345e2ba5452cd28cb0668 schema:name doi
53 schema:value 10.1007/978-3-0348-8944-5_4
54 rdf:type schema:PropertyValue
55 Na025078860064c5d80b74e67795fd3ce rdf:first Nf5f5e383424d44d893a7565a1d762987
56 rdf:rest Nbb2f2ffef2154c8b9c0e0475eecc87bc
57 Nb9bc15b2f706479ba149ff299c5b9c22 schema:familyName Kirstein
58 schema:givenName B.
59 rdf:type schema:Person
60 Nbb2f2ffef2154c8b9c0e0475eecc87bc rdf:first N9017694eb0224f95b04f0ea19d9b8fd1
61 rdf:rest Nd104a893c64b42e88492e7ec1d5e26cd
62 Nc16230a1aca14c908ba16135915b0da2 schema:location Basel
63 schema:name Birkhäuser Basel
64 rdf:type schema:Organisation
65 Ncc3d319819e94ab59c2c5d84d9e47fd6 schema:name readcube_id
66 schema:value 4b11fb3e5da78f41d180aac5a8559d9daa46a46bb50aaca2a1da230b31fbee24
67 rdf:type schema:PropertyValue
68 Nd104a893c64b42e88492e7ec1d5e26cd rdf:first N3c2d074706284c62b7d8aac697d39879
69 rdf:rest N3b858a765ede48069df6d8b79010efe7
70 Nd83e6db13d934f928a816c4bcf802efa schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Nf5f5e383424d44d893a7565a1d762987 schema:familyName Dym
73 schema:givenName H.
74 rdf:type schema:Person
75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
76 schema:name Mathematical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
79 schema:name Pure Mathematics
80 rdf:type schema:DefinedTerm
81 sg:person.013762723211.39 schema:affiliation N855de0767e434c0daccb8c6a5b2e6375
82 schema:familyName Dijksma
83 schema:givenName Aad
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
85 rdf:type schema:Person
86 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
87 schema:familyName Langer
88 schema:givenName Heinz
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
90 rdf:type schema:Person
91 sg:pub.10.1007/bf01691925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019968975
92 https://doi.org/10.1007/bf01691925
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/mana.19931610110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025837130
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0019-3577(91)90005-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1032234370
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/0022-1236(78)90064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035417758
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
101 schema:name Department of Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040 Vienna, Austria
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...