Contractive linear relations in Pontryagin spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

T. Ya Azizov , A. Dijksma

ABSTRACT

Contractive linear relations in Hilbert spaces are (graphs of) operators, but in spaces with an indefinite metric this is not always true. The presence of a multivalued part gives difficulties in the characterization of maximal contractive linear relations and in the proof of the existence of invariant subspaces. These topics are considered in this note. More... »

PAGES

19-51

References to SciGraph publications

  • 1991. New Hilbert Spaces from Old in PAUL HALMOS CELEBRATING 50 YEARS OF MATHEMATICS
  • 1989. Unitary Extensions of Isometries and Contractive Intertwining Dilations in THE GOHBERG ANNIVERSARY COLLECTION
  • 1974. Indefinite Inner Product Spaces in NONE
  • 1993. The Commutant Lifting Theorem for Contractions on Kreĭn Spaces in OPERATOR EXTENSIONS, INTERPOLATION OF FUNCTIONS AND RELATED TOPICS
  • 1990-06. New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces in MONATSHEFTE FÜR MATHEMATIK
  • 1990. Extension Theorems for Contraction Operators on Kreĭn Spaces in EXTENSION AND INTERPOLATION OF LINEAR OPERATORS AND MATRIX FUNCTIONS
  • Book

    TITLE

    Recent Progress in Operator Theory

    ISBN

    978-3-0348-9776-1
    978-3-0348-8793-9

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2

    DOI

    http://dx.doi.org/10.1007/978-3-0348-8793-9_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027507515


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Voronezh State University", 
              "id": "https://www.grid.ac/institutes/grid.20567.36", 
              "name": [
                "Department of Mathematics, Voronezh State University, Universitetskaja pl., 1, 394693, Voronezh, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Azizov", 
            "givenName": "T. Ya", 
            "id": "sg:person.012640546265.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Department of Mathematics, University of Groningen, P.O. Box 800, 9700, AV Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dijksma", 
            "givenName": "A.", 
            "id": "sg:person.013762723211.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-0348-8575-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004391438", 
              "https://doi.org/10.1007/978-3-0348-8575-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8575-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004391438", 
              "https://doi.org/10.1007/978-3-0348-8575-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65567-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011407145", 
              "https://doi.org/10.1007/978-3-642-65567-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65567-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011407145", 
              "https://doi.org/10.1007/978-3-642-65567-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0967-6_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014753019", 
              "https://doi.org/10.1007/978-1-4612-0967-6_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0967-6_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014753019", 
              "https://doi.org/10.1007/978-1-4612-0967-6_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jfan.1996.2992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015111391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01302935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023851554", 
              "https://doi.org/10.1007/bf01302935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01302935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023851554", 
              "https://doi.org/10.1007/bf01302935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.19931610110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025837130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7701-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026233832", 
              "https://doi.org/10.1007/978-3-0348-7701-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.19931620119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026593784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9278-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028645172", 
              "https://doi.org/10.1007/978-3-0348-9278-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/zaa/686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072322748"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998", 
        "datePublishedReg": "1998-01-01", 
        "description": "Contractive linear relations in Hilbert spaces are (graphs of) operators, but in spaces with an indefinite metric this is not always true. The presence of a multivalued part gives difficulties in the characterization of maximal contractive linear relations and in the proof of the existence of invariant subspaces. These topics are considered in this note.", 
        "editor": [
          {
            "familyName": "Gohberg", 
            "givenName": "I.", 
            "type": "Person"
          }, 
          {
            "familyName": "Mennicken", 
            "givenName": "R.", 
            "type": "Person"
          }, 
          {
            "familyName": "Tretter", 
            "givenName": "C.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-0348-8793-9_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-0348-9776-1", 
            "978-3-0348-8793-9"
          ], 
          "name": "Recent Progress in Operator Theory", 
          "type": "Book"
        }, 
        "name": "Contractive linear relations in Pontryagin spaces", 
        "pagination": "19-51", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027507515"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-0348-8793-9_2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8309c88d5a64061ca003ca1f489311bffc882906868317d98bf52b91e0c0df18"
            ]
          }
        ], 
        "publisher": {
          "location": "Basel", 
          "name": "Birkh\u00e4user Basel", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-0348-8793-9_2", 
          "https://app.dimensions.ai/details/publication/pub.1027507515"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-0348-8793-9_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-0348-8793-9_2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1e7c2024873c4f9bb664955a25008f87
    4 schema:citation sg:pub.10.1007/978-1-4612-0967-6_24
    5 sg:pub.10.1007/978-3-0348-7701-5_5
    6 sg:pub.10.1007/978-3-0348-8575-1_4
    7 sg:pub.10.1007/978-3-0348-9278-0_2
    8 sg:pub.10.1007/978-3-642-65567-8
    9 sg:pub.10.1007/bf01302935
    10 https://doi.org/10.1002/mana.19931610110
    11 https://doi.org/10.1002/mana.19931620119
    12 https://doi.org/10.1006/jfan.1996.2992
    13 https://doi.org/10.4171/zaa/686
    14 schema:datePublished 1998
    15 schema:datePublishedReg 1998-01-01
    16 schema:description Contractive linear relations in Hilbert spaces are (graphs of) operators, but in spaces with an indefinite metric this is not always true. The presence of a multivalued part gives difficulties in the characterization of maximal contractive linear relations and in the proof of the existence of invariant subspaces. These topics are considered in this note.
    17 schema:editor Nb3fd3f2a981d4c95beb27116e048ec1c
    18 schema:genre chapter
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N8af6de7d080041798a7ef32bfea2d6ec
    22 schema:name Contractive linear relations in Pontryagin spaces
    23 schema:pagination 19-51
    24 schema:productId N52034654d49e4ff4bbf2c0a7df51d57d
    25 N612c4fffa04e44e4b1ffb3edd84e7d7f
    26 Na38bc344b29241ba80a57961e93d5d6b
    27 schema:publisher N538aa4a800cf4c30a69dd8292d690390
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027507515
    29 https://doi.org/10.1007/978-3-0348-8793-9_2
    30 schema:sdDatePublished 2019-04-16T09:21
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N6f13a59084a54c6c89ca7d289b4a8e48
    33 schema:url https://link.springer.com/10.1007%2F978-3-0348-8793-9_2
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset chapters
    36 rdf:type schema:Chapter
    37 N1e7c2024873c4f9bb664955a25008f87 rdf:first sg:person.012640546265.41
    38 rdf:rest N8dcec7766a544aae88dd2e4589e874d6
    39 N2081ec03160d4e3680a5f7056affe3e1 rdf:first N9323297b1e2e4762b20efb184151c6b6
    40 rdf:rest rdf:nil
    41 N52034654d49e4ff4bbf2c0a7df51d57d schema:name readcube_id
    42 schema:value 8309c88d5a64061ca003ca1f489311bffc882906868317d98bf52b91e0c0df18
    43 rdf:type schema:PropertyValue
    44 N538aa4a800cf4c30a69dd8292d690390 schema:location Basel
    45 schema:name Birkhäuser Basel
    46 rdf:type schema:Organisation
    47 N612c4fffa04e44e4b1ffb3edd84e7d7f schema:name doi
    48 schema:value 10.1007/978-3-0348-8793-9_2
    49 rdf:type schema:PropertyValue
    50 N6f13a59084a54c6c89ca7d289b4a8e48 schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N8af6de7d080041798a7ef32bfea2d6ec schema:isbn 978-3-0348-8793-9
    53 978-3-0348-9776-1
    54 schema:name Recent Progress in Operator Theory
    55 rdf:type schema:Book
    56 N8dcec7766a544aae88dd2e4589e874d6 rdf:first sg:person.013762723211.39
    57 rdf:rest rdf:nil
    58 N9323297b1e2e4762b20efb184151c6b6 schema:familyName Tretter
    59 schema:givenName C.
    60 rdf:type schema:Person
    61 Na38bc344b29241ba80a57961e93d5d6b schema:name dimensions_id
    62 schema:value pub.1027507515
    63 rdf:type schema:PropertyValue
    64 Nb3fd3f2a981d4c95beb27116e048ec1c rdf:first Nb47304a2649e419e85369989db97b90a
    65 rdf:rest Nc0de0bff33e94125a116e47386bb0553
    66 Nb47304a2649e419e85369989db97b90a schema:familyName Gohberg
    67 schema:givenName I.
    68 rdf:type schema:Person
    69 Nc0de0bff33e94125a116e47386bb0553 rdf:first Ne5d4aa0f8fe2475091aba83f5ef2e1b1
    70 rdf:rest N2081ec03160d4e3680a5f7056affe3e1
    71 Ne5d4aa0f8fe2475091aba83f5ef2e1b1 schema:familyName Mennicken
    72 schema:givenName R.
    73 rdf:type schema:Person
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Pure Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:person.012640546265.41 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
    81 schema:familyName Azizov
    82 schema:givenName T. Ya
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41
    84 rdf:type schema:Person
    85 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    86 schema:familyName Dijksma
    87 schema:givenName A.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
    89 rdf:type schema:Person
    90 sg:pub.10.1007/978-1-4612-0967-6_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014753019
    91 https://doi.org/10.1007/978-1-4612-0967-6_24
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/978-3-0348-7701-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026233832
    94 https://doi.org/10.1007/978-3-0348-7701-5_5
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-0348-8575-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004391438
    97 https://doi.org/10.1007/978-3-0348-8575-1_4
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-3-0348-9278-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028645172
    100 https://doi.org/10.1007/978-3-0348-9278-0_2
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
    103 https://doi.org/10.1007/978-3-642-65567-8
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01302935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023851554
    106 https://doi.org/10.1007/bf01302935
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1002/mana.19931610110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025837130
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/mana.19931620119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026593784
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1006/jfan.1996.2992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015111391
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.4171/zaa/686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072322748
    115 rdf:type schema:CreativeWork
    116 https://www.grid.ac/institutes/grid.20567.36 schema:alternateName Voronezh State University
    117 schema:name Department of Mathematics, Voronezh State University, Universitetskaja pl., 1, 394693, Voronezh, Russia
    118 rdf:type schema:Organization
    119 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
    120 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700, AV Groningen, The Netherlands
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...