Contractive linear relations in Pontryagin spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1998

AUTHORS

T. Ya Azizov , A. Dijksma

ABSTRACT

Contractive linear relations in Hilbert spaces are (graphs of) operators, but in spaces with an indefinite metric this is not always true. The presence of a multivalued part gives difficulties in the characterization of maximal contractive linear relations and in the proof of the existence of invariant subspaces. These topics are considered in this note. More... »

PAGES

19-51

References to SciGraph publications

  • 1991. New Hilbert Spaces from Old in PAUL HALMOS CELEBRATING 50 YEARS OF MATHEMATICS
  • 1989. Unitary Extensions of Isometries and Contractive Intertwining Dilations in THE GOHBERG ANNIVERSARY COLLECTION
  • 1974. Indefinite Inner Product Spaces in NONE
  • 1993. The Commutant Lifting Theorem for Contractions on Kreĭn Spaces in OPERATOR EXTENSIONS, INTERPOLATION OF FUNCTIONS AND RELATED TOPICS
  • 1990-06. New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces in MONATSHEFTE FÜR MATHEMATIK
  • 1990. Extension Theorems for Contraction Operators on Kreĭn Spaces in EXTENSION AND INTERPOLATION OF LINEAR OPERATORS AND MATRIX FUNCTIONS
  • Book

    TITLE

    Recent Progress in Operator Theory

    ISBN

    978-3-0348-9776-1
    978-3-0348-8793-9

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2

    DOI

    http://dx.doi.org/10.1007/978-3-0348-8793-9_2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1027507515


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Voronezh State University", 
              "id": "https://www.grid.ac/institutes/grid.20567.36", 
              "name": [
                "Department of Mathematics, Voronezh State University, Universitetskaja pl., 1, 394693, Voronezh, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Azizov", 
            "givenName": "T. Ya", 
            "id": "sg:person.012640546265.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Groningen", 
              "id": "https://www.grid.ac/institutes/grid.4830.f", 
              "name": [
                "Department of Mathematics, University of Groningen, P.O. Box 800, 9700, AV Groningen, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dijksma", 
            "givenName": "A.", 
            "id": "sg:person.013762723211.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-0348-8575-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004391438", 
              "https://doi.org/10.1007/978-3-0348-8575-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8575-1_4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004391438", 
              "https://doi.org/10.1007/978-3-0348-8575-1_4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65567-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011407145", 
              "https://doi.org/10.1007/978-3-642-65567-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-65567-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011407145", 
              "https://doi.org/10.1007/978-3-642-65567-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0967-6_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014753019", 
              "https://doi.org/10.1007/978-1-4612-0967-6_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4612-0967-6_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014753019", 
              "https://doi.org/10.1007/978-1-4612-0967-6_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jfan.1996.2992", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015111391"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01302935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023851554", 
              "https://doi.org/10.1007/bf01302935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01302935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023851554", 
              "https://doi.org/10.1007/bf01302935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.19931610110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025837130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-7701-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026233832", 
              "https://doi.org/10.1007/978-3-0348-7701-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mana.19931620119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026593784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-9278-0_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028645172", 
              "https://doi.org/10.1007/978-3-0348-9278-0_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4171/zaa/686", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072322748"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1998", 
        "datePublishedReg": "1998-01-01", 
        "description": "Contractive linear relations in Hilbert spaces are (graphs of) operators, but in spaces with an indefinite metric this is not always true. The presence of a multivalued part gives difficulties in the characterization of maximal contractive linear relations and in the proof of the existence of invariant subspaces. These topics are considered in this note.", 
        "editor": [
          {
            "familyName": "Gohberg", 
            "givenName": "I.", 
            "type": "Person"
          }, 
          {
            "familyName": "Mennicken", 
            "givenName": "R.", 
            "type": "Person"
          }, 
          {
            "familyName": "Tretter", 
            "givenName": "C.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/978-3-0348-8793-9_2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "978-3-0348-9776-1", 
            "978-3-0348-8793-9"
          ], 
          "name": "Recent Progress in Operator Theory", 
          "type": "Book"
        }, 
        "name": "Contractive linear relations in Pontryagin spaces", 
        "pagination": "19-51", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1027507515"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/978-3-0348-8793-9_2"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "8309c88d5a64061ca003ca1f489311bffc882906868317d98bf52b91e0c0df18"
            ]
          }
        ], 
        "publisher": {
          "location": "Basel", 
          "name": "Birkh\u00e4user Basel", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/978-3-0348-8793-9_2", 
          "https://app.dimensions.ai/details/publication/pub.1027507515"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-16T09:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000002.jsonl", 
        "type": "Chapter", 
        "url": "https://link.springer.com/10.1007%2F978-3-0348-8793-9_2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8793-9_2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    121 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/978-3-0348-8793-9_2 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Na2c1314ba361411dad12a935d9b19314
    4 schema:citation sg:pub.10.1007/978-1-4612-0967-6_24
    5 sg:pub.10.1007/978-3-0348-7701-5_5
    6 sg:pub.10.1007/978-3-0348-8575-1_4
    7 sg:pub.10.1007/978-3-0348-9278-0_2
    8 sg:pub.10.1007/978-3-642-65567-8
    9 sg:pub.10.1007/bf01302935
    10 https://doi.org/10.1002/mana.19931610110
    11 https://doi.org/10.1002/mana.19931620119
    12 https://doi.org/10.1006/jfan.1996.2992
    13 https://doi.org/10.4171/zaa/686
    14 schema:datePublished 1998
    15 schema:datePublishedReg 1998-01-01
    16 schema:description Contractive linear relations in Hilbert spaces are (graphs of) operators, but in spaces with an indefinite metric this is not always true. The presence of a multivalued part gives difficulties in the characterization of maximal contractive linear relations and in the proof of the existence of invariant subspaces. These topics are considered in this note.
    17 schema:editor N94618d272d644b77bba8c1cf8a442a00
    18 schema:genre chapter
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N3a4d12a5f43a449ea8867ab0f0d89520
    22 schema:name Contractive linear relations in Pontryagin spaces
    23 schema:pagination 19-51
    24 schema:productId N021012c6d0d246c5924084f87f61c7fb
    25 N534bf0d475034e59ba831bdd2c514461
    26 Nffc2bded72b04e2497c385d7cbafdda4
    27 schema:publisher N3e29702db13444148ed75358c58864e2
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027507515
    29 https://doi.org/10.1007/978-3-0348-8793-9_2
    30 schema:sdDatePublished 2019-04-16T09:21
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N66a40687ed34434ea93e0d4705835978
    33 schema:url https://link.springer.com/10.1007%2F978-3-0348-8793-9_2
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset chapters
    36 rdf:type schema:Chapter
    37 N021012c6d0d246c5924084f87f61c7fb schema:name dimensions_id
    38 schema:value pub.1027507515
    39 rdf:type schema:PropertyValue
    40 N0db7e63eb7bc41b6a4a5103f097b8817 schema:familyName Tretter
    41 schema:givenName C.
    42 rdf:type schema:Person
    43 N29d406bc4f594b2bb62fb663b3467350 schema:familyName Mennicken
    44 schema:givenName R.
    45 rdf:type schema:Person
    46 N2e67d425599e488086a1ffcaa57abc3c rdf:first N29d406bc4f594b2bb62fb663b3467350
    47 rdf:rest Nf260542998a64934a28058a2161c83cc
    48 N31f39817e3a746d59e4ab8dec97d4662 schema:familyName Gohberg
    49 schema:givenName I.
    50 rdf:type schema:Person
    51 N3a4d12a5f43a449ea8867ab0f0d89520 schema:isbn 978-3-0348-8793-9
    52 978-3-0348-9776-1
    53 schema:name Recent Progress in Operator Theory
    54 rdf:type schema:Book
    55 N3e29702db13444148ed75358c58864e2 schema:location Basel
    56 schema:name Birkhäuser Basel
    57 rdf:type schema:Organisation
    58 N534bf0d475034e59ba831bdd2c514461 schema:name readcube_id
    59 schema:value 8309c88d5a64061ca003ca1f489311bffc882906868317d98bf52b91e0c0df18
    60 rdf:type schema:PropertyValue
    61 N66a40687ed34434ea93e0d4705835978 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 N94618d272d644b77bba8c1cf8a442a00 rdf:first N31f39817e3a746d59e4ab8dec97d4662
    64 rdf:rest N2e67d425599e488086a1ffcaa57abc3c
    65 Na2c1314ba361411dad12a935d9b19314 rdf:first sg:person.012640546265.41
    66 rdf:rest Na5fdefffdcba4395bc89d7139936afb0
    67 Na5fdefffdcba4395bc89d7139936afb0 rdf:first sg:person.013762723211.39
    68 rdf:rest rdf:nil
    69 Nf260542998a64934a28058a2161c83cc rdf:first N0db7e63eb7bc41b6a4a5103f097b8817
    70 rdf:rest rdf:nil
    71 Nffc2bded72b04e2497c385d7cbafdda4 schema:name doi
    72 schema:value 10.1007/978-3-0348-8793-9_2
    73 rdf:type schema:PropertyValue
    74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Mathematical Sciences
    76 rdf:type schema:DefinedTerm
    77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Pure Mathematics
    79 rdf:type schema:DefinedTerm
    80 sg:person.012640546265.41 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
    81 schema:familyName Azizov
    82 schema:givenName T. Ya
    83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41
    84 rdf:type schema:Person
    85 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
    86 schema:familyName Dijksma
    87 schema:givenName A.
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
    89 rdf:type schema:Person
    90 sg:pub.10.1007/978-1-4612-0967-6_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014753019
    91 https://doi.org/10.1007/978-1-4612-0967-6_24
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/978-3-0348-7701-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026233832
    94 https://doi.org/10.1007/978-3-0348-7701-5_5
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/978-3-0348-8575-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004391438
    97 https://doi.org/10.1007/978-3-0348-8575-1_4
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/978-3-0348-9278-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028645172
    100 https://doi.org/10.1007/978-3-0348-9278-0_2
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
    103 https://doi.org/10.1007/978-3-642-65567-8
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf01302935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023851554
    106 https://doi.org/10.1007/bf01302935
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1002/mana.19931610110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025837130
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1002/mana.19931620119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026593784
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1006/jfan.1996.2992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015111391
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.4171/zaa/686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072322748
    115 rdf:type schema:CreativeWork
    116 https://www.grid.ac/institutes/grid.20567.36 schema:alternateName Voronezh State University
    117 schema:name Department of Mathematics, Voronezh State University, Universitetskaja pl., 1, 394693, Voronezh, Russia
    118 rdf:type schema:Organization
    119 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
    120 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700, AV Groningen, The Netherlands
    121 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...