On Asymptotic properties of the one-dimensional Schrödinger equation View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Irina V. Astashova

ABSTRACT

For the one-dimensional Schrödinger equation y″(x) =ip0∣y(x)∣2γy(x) with γ > 0, po≠0, x ∈ R, asymptotics of all solutions are obtained.

PAGES

15-19

References to SciGraph publications

Book

TITLE

Complex Analysis and Related Topics

ISBN

978-3-0348-9734-1
978-3-0348-8698-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8698-7_2

DOI

http://dx.doi.org/10.1007/978-3-0348-8698-7_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005609466


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Kutuzovski prosp, 30/32, apt. 494, 121165, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astashova", 
        "givenName": "Irina V.", 
        "id": "sg:person.012450371632.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00251174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002493717", 
          "https://doi.org/10.1007/bf00251174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00251174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002493717", 
          "https://doi.org/10.1007/bf00251174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(80)90018-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018828912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1036055071", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-1808-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036055071", 
          "https://doi.org/10.1007/978-94-011-1808-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-011-1808-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036055071", 
          "https://doi.org/10.1007/978-94-011-1808-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02760233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050175457", 
          "https://doi.org/10.1007/bf02760233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/9/6/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059111033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0294-1449(16)30213-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083893987"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "For the one-dimensional Schr\u00f6dinger equation y\u2033(x) =ip0\u2223y(x)\u22232\u03b3y(x) with \u03b3 > 0, po\u22600, x \u2208 R, asymptotics of all solutions are obtained.", 
    "editor": [
      {
        "familyName": "de Arellano", 
        "givenName": "Enrique Ram\u00edrez", 
        "type": "Person"
      }, 
      {
        "familyName": "Vasilevski", 
        "givenName": "Nikolai L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Shapiro", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "familyName": "Tovar", 
        "givenName": "Luis Manuel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8698-7_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9734-1", 
        "978-3-0348-8698-7"
      ], 
      "name": "Complex Analysis and Related Topics", 
      "type": "Book"
    }, 
    "name": "On Asymptotic properties of the one-dimensional Schr\u00f6dinger equation", 
    "pagination": "15-19", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005609466"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8698-7_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1aba201444acd7fae9381bb7bf358b137ee121bf3b5a8866c0b8176d5cec531c"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8698-7_2", 
      "https://app.dimensions.ai/details/publication/pub.1005609466"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68944_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8698-7_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8698-7_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8698-7_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8698-7_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8698-7_2'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      22 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8698-7_2 schema:author Nf139b20f2e3f49d786e707bf982e4fd1
2 schema:citation sg:pub.10.1007/978-94-011-1808-8
3 sg:pub.10.1007/bf00251174
4 sg:pub.10.1007/bf02760233
5 https://app.dimensions.ai/details/publication/pub.1036055071
6 https://doi.org/10.1016/0022-0396(80)90018-2
7 https://doi.org/10.1016/s0294-1449(16)30213-x
8 https://doi.org/10.1088/0951-7715/9/6/001
9 schema:datePublished 2000
10 schema:datePublishedReg 2000-01-01
11 schema:description For the one-dimensional Schrödinger equation y″(x) =ip0∣y(x)∣2γy(x) with γ > 0, po≠0, x ∈ R, asymptotics of all solutions are obtained.
12 schema:editor N531f41ae1f2f4d68acc688730c38cf3e
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nc93f9a7215b8428d939f12f027bbbf7c
17 schema:name On Asymptotic properties of the one-dimensional Schrödinger equation
18 schema:pagination 15-19
19 schema:productId N71013433c72d4146a1fc275799842487
20 Nefcb60e10c314bf489daadd1ad0f7425
21 Nf9b75126cf024b3fa76166cad3df0b1b
22 schema:publisher N70d7f708b2354aaf902188959e2c8bae
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005609466
24 https://doi.org/10.1007/978-3-0348-8698-7_2
25 schema:sdDatePublished 2019-04-16T08:55
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Na6de8e90ffca441aa92c2bd10a02c010
28 schema:url https://link.springer.com/10.1007%2F978-3-0348-8698-7_2
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N16f34b2eac1c49b5b6a404029192237e rdf:first N3e8587cf39e64706898d07183b975daa
33 rdf:rest rdf:nil
34 N2948fc4466b846a5b539b5dfd6ecd7b9 rdf:first N5033b93f96ea4837a5f2b0f93f74f71f
35 rdf:rest N43a0ee5d062842e0a7db250ce845a5fa
36 N3e8587cf39e64706898d07183b975daa schema:familyName Tovar
37 schema:givenName Luis Manuel
38 rdf:type schema:Person
39 N40485735239e445aab72e76387fd10e5 schema:name Kutuzovski prosp, 30/32, apt. 494, 121165, Moscow, Russia
40 rdf:type schema:Organization
41 N43a0ee5d062842e0a7db250ce845a5fa rdf:first N828c346313fd474bbe31da27276b5882
42 rdf:rest N16f34b2eac1c49b5b6a404029192237e
43 N5033b93f96ea4837a5f2b0f93f74f71f schema:familyName Vasilevski
44 schema:givenName Nikolai L.
45 rdf:type schema:Person
46 N531f41ae1f2f4d68acc688730c38cf3e rdf:first Ne24c6aacfbb24f9abeb0a2a754b68464
47 rdf:rest N2948fc4466b846a5b539b5dfd6ecd7b9
48 N70d7f708b2354aaf902188959e2c8bae schema:location Basel
49 schema:name Birkhäuser Basel
50 rdf:type schema:Organisation
51 N71013433c72d4146a1fc275799842487 schema:name readcube_id
52 schema:value 1aba201444acd7fae9381bb7bf358b137ee121bf3b5a8866c0b8176d5cec531c
53 rdf:type schema:PropertyValue
54 N828c346313fd474bbe31da27276b5882 schema:familyName Shapiro
55 schema:givenName Michael
56 rdf:type schema:Person
57 Na6de8e90ffca441aa92c2bd10a02c010 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Nc93f9a7215b8428d939f12f027bbbf7c schema:isbn 978-3-0348-8698-7
60 978-3-0348-9734-1
61 schema:name Complex Analysis and Related Topics
62 rdf:type schema:Book
63 Ne24c6aacfbb24f9abeb0a2a754b68464 schema:familyName de Arellano
64 schema:givenName Enrique Ramírez
65 rdf:type schema:Person
66 Nefcb60e10c314bf489daadd1ad0f7425 schema:name doi
67 schema:value 10.1007/978-3-0348-8698-7_2
68 rdf:type schema:PropertyValue
69 Nf139b20f2e3f49d786e707bf982e4fd1 rdf:first sg:person.012450371632.48
70 rdf:rest rdf:nil
71 Nf9b75126cf024b3fa76166cad3df0b1b schema:name dimensions_id
72 schema:value pub.1005609466
73 rdf:type schema:PropertyValue
74 sg:person.012450371632.48 schema:affiliation N40485735239e445aab72e76387fd10e5
75 schema:familyName Astashova
76 schema:givenName Irina V.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012450371632.48
78 rdf:type schema:Person
79 sg:pub.10.1007/978-94-011-1808-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036055071
80 https://doi.org/10.1007/978-94-011-1808-8
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf00251174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002493717
83 https://doi.org/10.1007/bf00251174
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02760233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050175457
86 https://doi.org/10.1007/bf02760233
87 rdf:type schema:CreativeWork
88 https://app.dimensions.ai/details/publication/pub.1036055071 schema:CreativeWork
89 https://doi.org/10.1016/0022-0396(80)90018-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018828912
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0294-1449(16)30213-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083893987
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1088/0951-7715/9/6/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059111033
94 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...