Quasi-Contractions on Kreĭn Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1993

AUTHORS

Aurelian Gheondea

ABSTRACT

A quasi-contraction, acting between Kreĭn spaces, is a linear bounded operator which is contractive when restricted to some subspace of finite codimension. If, in addition, the same property is satisfied by the adjoint of the operator, then it is called a double quasi-contraction. This paper is devoted to the investigation of basic properties of quasi-contractions and double quasi-contractions. Among others, we prove that the compression of a quasi-contraction (double quasi-contraction) to maximal uniformly negative subspaces is a semi-Fredholm operator (respectively, Fredholm operator) and we give a formula to compute its index. A spectral characterization of double quasi-contractions within the class of quasi-contractions is also obtained. More... »

PAGES

123-148

References to SciGraph publications

Book

TITLE

Operator Extensions, Interpolation of Functions and Related Topics

ISBN

978-3-0348-9687-0
978-3-0348-8575-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7

DOI

http://dx.doi.org/10.1007/978-3-0348-8575-1_7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040296755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institutul de Matematic\u0103, al Academiei Rom\u00e2ne, C.P. 1-764, 70700, Bucure\u015fti, Rom\u00e2nia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gheondea", 
        "givenName": "Aurelian", 
        "id": "sg:person.016700571527.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bfb0069840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006857348", 
          "https://doi.org/10.1007/bfb0069840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7701-5_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026233832", 
          "https://doi.org/10.1007/978-3-0348-7701-5_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(92)90124-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043655855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1307/mmj/1029003552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064976412"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993", 
    "datePublishedReg": "1993-01-01", 
    "description": "A quasi-contraction, acting between Kre\u012dn spaces, is a linear bounded operator which is contractive when restricted to some subspace of finite codimension. If, in addition, the same property is satisfied by the adjoint of the operator, then it is called a double quasi-contraction. This paper is devoted to the investigation of basic properties of quasi-contractions and double quasi-contractions. Among others, we prove that the compression of a quasi-contraction (double quasi-contraction) to maximal uniformly negative subspaces is a semi-Fredholm operator (respectively, Fredholm operator) and we give a formula to compute its index. A spectral characterization of double quasi-contractions within the class of quasi-contractions is also obtained.", 
    "editor": [
      {
        "familyName": "Gheondea", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Timotin", 
        "givenName": "D.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vasilescu", 
        "givenName": "F.-H.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8575-1_7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9687-0", 
        "978-3-0348-8575-1"
      ], 
      "name": "Operator Extensions, Interpolation of Functions and Related Topics", 
      "type": "Book"
    }, 
    "name": "Quasi-Contractions on Kre\u012dn Spaces", 
    "pagination": "123-148", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040296755"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8575-1_7"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bff4e048848667879e35428e67b2a6b67eab897bcf2a55b945c4ea3512517c1c"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8575-1_7", 
      "https://app.dimensions.ai/details/publication/pub.1040296755"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68978_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8575-1_7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8575-1_7 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N2feb086078a04f0db449ab2caf4e0fe0
4 schema:citation sg:pub.10.1007/978-3-0348-7701-5_5
5 sg:pub.10.1007/978-3-642-65567-8
6 sg:pub.10.1007/bfb0069840
7 https://doi.org/10.1002/mana.19770770116
8 https://doi.org/10.1016/0022-1236(92)90124-2
9 https://doi.org/10.1307/mmj/1029003552
10 schema:datePublished 1993
11 schema:datePublishedReg 1993-01-01
12 schema:description A quasi-contraction, acting between Kreĭn spaces, is a linear bounded operator which is contractive when restricted to some subspace of finite codimension. If, in addition, the same property is satisfied by the adjoint of the operator, then it is called a double quasi-contraction. This paper is devoted to the investigation of basic properties of quasi-contractions and double quasi-contractions. Among others, we prove that the compression of a quasi-contraction (double quasi-contraction) to maximal uniformly negative subspaces is a semi-Fredholm operator (respectively, Fredholm operator) and we give a formula to compute its index. A spectral characterization of double quasi-contractions within the class of quasi-contractions is also obtained.
13 schema:editor N64d7f0ad027d495b8039657ccbedcaf0
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N13ed17a0e2304d778bc6c91815964fae
18 schema:name Quasi-Contractions on Kreĭn Spaces
19 schema:pagination 123-148
20 schema:productId N0272c96e697b4fa899365f323f77f9b9
21 N491d46077f2041a794003587f0d072b7
22 Ne0a77cbf3d7e4ca7be05683a36cc79dd
23 schema:publisher Nbf02ed15ef264c61911626f89be19d5c
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040296755
25 https://doi.org/10.1007/978-3-0348-8575-1_7
26 schema:sdDatePublished 2019-04-16T08:59
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N19fd5a84d30943cd98e64c7cb38a5d0b
29 schema:url https://link.springer.com/10.1007%2F978-3-0348-8575-1_7
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N0272c96e697b4fa899365f323f77f9b9 schema:name doi
34 schema:value 10.1007/978-3-0348-8575-1_7
35 rdf:type schema:PropertyValue
36 N130e05ee38734f079e334727b34718f2 schema:familyName Timotin
37 schema:givenName D.
38 rdf:type schema:Person
39 N13ed17a0e2304d778bc6c91815964fae schema:isbn 978-3-0348-8575-1
40 978-3-0348-9687-0
41 schema:name Operator Extensions, Interpolation of Functions and Related Topics
42 rdf:type schema:Book
43 N19fd5a84d30943cd98e64c7cb38a5d0b schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 N2e3f0432bf454af994ec9426c28fa34a schema:familyName Vasilescu
46 schema:givenName F.-H.
47 rdf:type schema:Person
48 N2feb086078a04f0db449ab2caf4e0fe0 rdf:first sg:person.016700571527.26
49 rdf:rest rdf:nil
50 N43e023f16dd54438b69338163aa0d53e schema:familyName Gheondea
51 schema:givenName A.
52 rdf:type schema:Person
53 N491d46077f2041a794003587f0d072b7 schema:name readcube_id
54 schema:value bff4e048848667879e35428e67b2a6b67eab897bcf2a55b945c4ea3512517c1c
55 rdf:type schema:PropertyValue
56 N64d7f0ad027d495b8039657ccbedcaf0 rdf:first N43e023f16dd54438b69338163aa0d53e
57 rdf:rest N9ba96d76fdc14a05b84ebc7d063a6435
58 N8293c2fc6fe04c80b7225c25372b8e90 schema:name Institutul de Matematică, al Academiei Române, C.P. 1-764, 70700, Bucureşti, România
59 rdf:type schema:Organization
60 N9ba96d76fdc14a05b84ebc7d063a6435 rdf:first N130e05ee38734f079e334727b34718f2
61 rdf:rest N9c1bb160e1164e0fafe624056c9c97c5
62 N9c1bb160e1164e0fafe624056c9c97c5 rdf:first N2e3f0432bf454af994ec9426c28fa34a
63 rdf:rest rdf:nil
64 Nbf02ed15ef264c61911626f89be19d5c schema:location Basel
65 schema:name Birkhäuser Basel
66 rdf:type schema:Organisation
67 Ne0a77cbf3d7e4ca7be05683a36cc79dd schema:name dimensions_id
68 schema:value pub.1040296755
69 rdf:type schema:PropertyValue
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
74 schema:name Pure Mathematics
75 rdf:type schema:DefinedTerm
76 sg:person.016700571527.26 schema:affiliation N8293c2fc6fe04c80b7225c25372b8e90
77 schema:familyName Gheondea
78 schema:givenName Aurelian
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26
80 rdf:type schema:Person
81 sg:pub.10.1007/978-3-0348-7701-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026233832
82 https://doi.org/10.1007/978-3-0348-7701-5_5
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
85 https://doi.org/10.1007/978-3-642-65567-8
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/bfb0069840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006857348
88 https://doi.org/10.1007/bfb0069840
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0022-1236(92)90124-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043655855
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1307/mmj/1029003552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064976412
95 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...