1993
AUTHORS ABSTRACTA quasi-contraction, acting between Kreĭn spaces, is a linear bounded operator which is contractive when restricted to some subspace of finite codimension. If, in addition, the same property is satisfied by the adjoint of the operator, then it is called a double quasi-contraction. This paper is devoted to the investigation of basic properties of quasi-contractions and double quasi-contractions. Among others, we prove that the compression of a quasi-contraction (double quasi-contraction) to maximal uniformly negative subspaces is a semi-Fredholm operator (respectively, Fredholm operator) and we give a formula to compute its index. A spectral characterization of double quasi-contractions within the class of quasi-contractions is also obtained. More... »
PAGES123-148
Operator Extensions, Interpolation of Functions and Related Topics
ISBN
978-3-0348-9687-0
978-3-0348-8575-1
http://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7
DOIhttp://dx.doi.org/10.1007/978-3-0348-8575-1_7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040296755
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Institutul de Matematic\u0103, al Academiei Rom\u00e2ne, C.P. 1-764, 70700, Bucure\u015fti, Rom\u00e2nia"
],
"type": "Organization"
},
"familyName": "Gheondea",
"givenName": "Aurelian",
"id": "sg:person.016700571527.26",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016700571527.26"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bfb0069840",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006857348",
"https://doi.org/10.1007/bfb0069840"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-65567-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011407145",
"https://doi.org/10.1007/978-3-642-65567-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-65567-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011407145",
"https://doi.org/10.1007/978-3-642-65567-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-7701-5_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026233832",
"https://doi.org/10.1007/978-3-0348-7701-5_5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mana.19770770116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027367955"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-1236(92)90124-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043655855"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1307/mmj/1029003552",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064976412"
],
"type": "CreativeWork"
}
],
"datePublished": "1993",
"datePublishedReg": "1993-01-01",
"description": "A quasi-contraction, acting between Kre\u012dn spaces, is a linear bounded operator which is contractive when restricted to some subspace of finite codimension. If, in addition, the same property is satisfied by the adjoint of the operator, then it is called a double quasi-contraction. This paper is devoted to the investigation of basic properties of quasi-contractions and double quasi-contractions. Among others, we prove that the compression of a quasi-contraction (double quasi-contraction) to maximal uniformly negative subspaces is a semi-Fredholm operator (respectively, Fredholm operator) and we give a formula to compute its index. A spectral characterization of double quasi-contractions within the class of quasi-contractions is also obtained.",
"editor": [
{
"familyName": "Gheondea",
"givenName": "A.",
"type": "Person"
},
{
"familyName": "Timotin",
"givenName": "D.",
"type": "Person"
},
{
"familyName": "Vasilescu",
"givenName": "F.-H.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-0348-8575-1_7",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-0348-9687-0",
"978-3-0348-8575-1"
],
"name": "Operator Extensions, Interpolation of Functions and Related Topics",
"type": "Book"
},
"name": "Quasi-Contractions on Kre\u012dn Spaces",
"pagination": "123-148",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040296755"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-0348-8575-1_7"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"bff4e048848667879e35428e67b2a6b67eab897bcf2a55b945c4ea3512517c1c"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user Basel",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-0348-8575-1_7",
"https://app.dimensions.ai/details/publication/pub.1040296755"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T08:59",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68978_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-0348-8575-1_7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_7'
This table displays all metadata directly associated to this object as RDF triples.
95 TRIPLES
23 PREDICATES
33 URIs
20 LITERALS
8 BLANK NODES