Ontology type: schema:Chapter
1993
AUTHORSAad Dijksma , Michael Dritschel , Stefania Marcantognini , Henk de Snoo
ABSTRACTA proof of the commutant lifting theorem for contractions on Kreĭn spaces is given. This is done by associating to the data a suitable isometry V so that a solution of the lifting problem is obtained directly from a unitary Hilbert space extension of V. Furthermore, a bijective correspondence between the solutions and the family of all minimal unitary Hilbert space extensions of V is established. In the Hilbert space case the method is due to R. Arocena. More... »
PAGES65-83
Operator Extensions, Interpolation of Functions and Related Topics
ISBN
978-3-0348-9687-0
978-3-0348-8575-1
http://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_4
DOIhttp://dx.doi.org/10.1007/978-3-0348-8575-1_4
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1004391438
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.B. 800, 9700 AV, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "Aad",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.B. 800, 9700 AV, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dritschel",
"givenName": "Michael",
"id": "sg:person.010707720201.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707720201.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.B. 800, 9700 AV, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Marcantognini",
"givenName": "Stefania",
"id": "sg:person.013033537553.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033537553.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.B. 800, 9700 AV, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "de Snoo",
"givenName": "Henk",
"id": "sg:person.012621265101.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012621265101.72"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://app.dimensions.ai/details/publication/pub.1008941350",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-7712-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008941350",
"https://doi.org/10.1007/978-3-0348-7712-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-7712-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008941350",
"https://doi.org/10.1007/978-3-0348-7712-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-65567-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011407145",
"https://doi.org/10.1007/978-3-642-65567-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-65567-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011407145",
"https://doi.org/10.1007/978-3-642-65567-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-0967-6_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014753019",
"https://doi.org/10.1007/978-1-4612-0967-6_24"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-0967-6_24",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014753019",
"https://doi.org/10.1007/978-1-4612-0967-6_24"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/s0002-9947-1967-0208383-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020835424"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-7701-5_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026233832",
"https://doi.org/10.1007/978-3-0348-7701-5_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9278-0_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028645172",
"https://doi.org/10.1007/978-3-0348-9278-0_2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-247x(89)90218-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043943275"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.2307/1994641",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1069689130"
],
"type": "CreativeWork"
}
],
"datePublished": "1993",
"datePublishedReg": "1993-01-01",
"description": "A proof of the commutant lifting theorem for contractions on Kre\u012dn spaces is given. This is done by associating to the data a suitable isometry V so that a solution of the lifting problem is obtained directly from a unitary Hilbert space extension of V. Furthermore, a bijective correspondence between the solutions and the family of all minimal unitary Hilbert space extensions of V is established. In the Hilbert space case the method is due to R. Arocena.",
"editor": [
{
"familyName": "Gheondea",
"givenName": "A.",
"type": "Person"
},
{
"familyName": "Timotin",
"givenName": "D.",
"type": "Person"
},
{
"familyName": "Vasilescu",
"givenName": "F.-H.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-0348-8575-1_4",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-0348-9687-0",
"978-3-0348-8575-1"
],
"name": "Operator Extensions, Interpolation of Functions and Related Topics",
"type": "Book"
},
"name": "The Commutant Lifting Theorem for Contractions on Kre\u012dn Spaces",
"pagination": "65-83",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1004391438"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-0348-8575-1_4"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"14ecb3fcd8f4f3d63865b59a3686dec96a017e0590da0b79a54ac3eed50846a8"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user Basel",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-0348-8575-1_4",
"https://app.dimensions.ai/details/publication/pub.1004391438"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T08:57",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68969_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-0348-8575-1_4"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_4'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_4'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_4'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8575-1_4'
This table displays all metadata directly associated to this object as RDF triples.
127 TRIPLES
23 PREDICATES
36 URIs
20 LITERALS
8 BLANK NODES