Measuring Fractal Dimensions of Cell Contours: Practical Approaches and their Limitations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1994

AUTHORS

Gerd Baumann , Andreas Barth , Theo F. Nonnenmacher

ABSTRACT

We discuss practical methods to examine fractal properties of electron micrographs and outline a procedure to extract information from a gray scale image (EMM-image) by using different filtering methods. The data obtained from this reduction of information is used as a basis for numerical calculations of fractal dimensions D. To determine D of a given object, we use the yardstick, the box counting and the probabilistic methods. These three approaches will be critically discussed and the finite scaling range for natural objects such as cells will be examined. The method of digital image analysis as discussed here incorporates an algorithm that detects self-similar domains in the structure of cells. We apply this method to determine the fractal dimension of cell contours and we discuss advantages and limitations of these methods. As prototype examples, we investigate cellprofiles of lymphocytes and lymphocyte leukemic cells. More... »

PAGES

182-189

Book

TITLE

Fractals in Biology and Medicine

ISBN

978-3-0348-9652-8
978-3-0348-8501-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8501-0_15

DOI

http://dx.doi.org/10.1007/978-3-0348-8501-0_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052203679


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Mathematical Physics, University of Ulm, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumann", 
        "givenName": "Gerd", 
        "id": "sg:person.01247751074.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Mathematical Physics, University of Ulm, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barth", 
        "givenName": "Andreas", 
        "id": "sg:person.01304207000.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304207000.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Mathematical Physics, University of Ulm, D-89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nonnenmacher", 
        "givenName": "Theo F.", 
        "id": "sg:person.016610331425.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610331425.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0344-0338(11)80080-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002547484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(88)90130-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011240449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(88)90130-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011240449"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994", 
    "datePublishedReg": "1994-01-01", 
    "description": "We discuss practical methods to examine fractal properties of electron micrographs and outline a procedure to extract information from a gray scale image (EMM-image) by using different filtering methods. The data obtained from this reduction of information is used as a basis for numerical calculations of fractal dimensions D. To determine D of a given object, we use the yardstick, the box counting and the probabilistic methods. These three approaches will be critically discussed and the finite scaling range for natural objects such as cells will be examined. The method of digital image analysis as discussed here incorporates an algorithm that detects self-similar domains in the structure of cells. We apply this method to determine the fractal dimension of cell contours and we discuss advantages and limitations of these methods. As prototype examples, we investigate cellprofiles of lymphocytes and lymphocyte leukemic cells.", 
    "editor": [
      {
        "familyName": "Nonnenmacher", 
        "givenName": "T. F.", 
        "type": "Person"
      }, 
      {
        "familyName": "Losa", 
        "givenName": "G. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Weibel", 
        "givenName": "E. R.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8501-0_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9652-8", 
        "978-3-0348-8501-0"
      ], 
      "name": "Fractals in Biology and Medicine", 
      "type": "Book"
    }, 
    "name": "Measuring Fractal Dimensions of Cell Contours: Practical Approaches and their Limitations", 
    "pagination": "182-189", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052203679"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8501-0_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f8a9f11bade8c8fb6da1eeeb354ef5c5ec246f1e97baee1171b2e0440f7ff11c"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8501-0_15", 
      "https://app.dimensions.ai/details/publication/pub.1052203679"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68971_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8501-0_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8501-0_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8501-0_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8501-0_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8501-0_15'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8501-0_15 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne8a9a5fda3754f988f15efc745290edd
4 schema:citation https://doi.org/10.1016/0165-0270(88)90130-6
5 https://doi.org/10.1016/s0344-0338(11)80080-4
6 schema:datePublished 1994
7 schema:datePublishedReg 1994-01-01
8 schema:description We discuss practical methods to examine fractal properties of electron micrographs and outline a procedure to extract information from a gray scale image (EMM-image) by using different filtering methods. The data obtained from this reduction of information is used as a basis for numerical calculations of fractal dimensions D. To determine D of a given object, we use the yardstick, the box counting and the probabilistic methods. These three approaches will be critically discussed and the finite scaling range for natural objects such as cells will be examined. The method of digital image analysis as discussed here incorporates an algorithm that detects self-similar domains in the structure of cells. We apply this method to determine the fractal dimension of cell contours and we discuss advantages and limitations of these methods. As prototype examples, we investigate cellprofiles of lymphocytes and lymphocyte leukemic cells.
9 schema:editor N06fd99d436bd4c6e9dc593c343c3d146
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Ne3241968584149ed8d2458f054592958
14 schema:name Measuring Fractal Dimensions of Cell Contours: Practical Approaches and their Limitations
15 schema:pagination 182-189
16 schema:productId N44b5b3c8c1904ad49bf178c7a3b4e358
17 N81b72a2c4a9444ddbbe832ea446fc7c4
18 Nd4bcca3a0a5241309d43207a79590a1b
19 schema:publisher Nbef67a8eef8549c5a580410ecd79052f
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052203679
21 https://doi.org/10.1007/978-3-0348-8501-0_15
22 schema:sdDatePublished 2019-04-16T08:58
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N987ceee6d0d948a7a35c4d5e40adeee9
25 schema:url https://link.springer.com/10.1007%2F978-3-0348-8501-0_15
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N05eed0bee951465d9df3734273661f05 rdf:first sg:person.016610331425.12
30 rdf:rest rdf:nil
31 N06fd99d436bd4c6e9dc593c343c3d146 rdf:first N4c6af5b805f142acb393ca94f30495b2
32 rdf:rest N78669e5c40954eef9f72b5edceb03083
33 N2bfbf608aa2a457bb9fd9b97a14a2051 rdf:first Nbbf8c55ab3594efab1ae8684f6b671e9
34 rdf:rest rdf:nil
35 N44b5b3c8c1904ad49bf178c7a3b4e358 schema:name readcube_id
36 schema:value f8a9f11bade8c8fb6da1eeeb354ef5c5ec246f1e97baee1171b2e0440f7ff11c
37 rdf:type schema:PropertyValue
38 N4c6af5b805f142acb393ca94f30495b2 schema:familyName Nonnenmacher
39 schema:givenName T. F.
40 rdf:type schema:Person
41 N5d78401514764319be62dae3588bf801 schema:familyName Losa
42 schema:givenName G. A.
43 rdf:type schema:Person
44 N78669e5c40954eef9f72b5edceb03083 rdf:first N5d78401514764319be62dae3588bf801
45 rdf:rest N2bfbf608aa2a457bb9fd9b97a14a2051
46 N81b72a2c4a9444ddbbe832ea446fc7c4 schema:name dimensions_id
47 schema:value pub.1052203679
48 rdf:type schema:PropertyValue
49 N83c0d6334b434b229cedec38db6031a3 rdf:first sg:person.01304207000.93
50 rdf:rest N05eed0bee951465d9df3734273661f05
51 N987ceee6d0d948a7a35c4d5e40adeee9 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 Nbbf8c55ab3594efab1ae8684f6b671e9 schema:familyName Weibel
54 schema:givenName E. R.
55 rdf:type schema:Person
56 Nbef67a8eef8549c5a580410ecd79052f schema:location Basel
57 schema:name Birkhäuser Basel
58 rdf:type schema:Organisation
59 Nd4bcca3a0a5241309d43207a79590a1b schema:name doi
60 schema:value 10.1007/978-3-0348-8501-0_15
61 rdf:type schema:PropertyValue
62 Ne3241968584149ed8d2458f054592958 schema:isbn 978-3-0348-8501-0
63 978-3-0348-9652-8
64 schema:name Fractals in Biology and Medicine
65 rdf:type schema:Book
66 Ne8a9a5fda3754f988f15efc745290edd rdf:first sg:person.01247751074.51
67 rdf:rest N83c0d6334b434b229cedec38db6031a3
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:person.01247751074.51 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
75 schema:familyName Baumann
76 schema:givenName Gerd
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247751074.51
78 rdf:type schema:Person
79 sg:person.01304207000.93 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
80 schema:familyName Barth
81 schema:givenName Andreas
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304207000.93
83 rdf:type schema:Person
84 sg:person.016610331425.12 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
85 schema:familyName Nonnenmacher
86 schema:givenName Theo F.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610331425.12
88 rdf:type schema:Person
89 https://doi.org/10.1016/0165-0270(88)90130-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011240449
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0344-0338(11)80080-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002547484
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
94 schema:name Department of Mathematical Physics, University of Ulm, D-89069, Ulm, Germany
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...