Classical Nevanlinna-Pick Interpolation with Real Interpolation Points View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Daniel Alpay , Aad Dijksma , Heinz Langer

ABSTRACT

We consider a scalar Nevanlinna-Pick interpolation problem with at most countably many interpolation points which lie in ℂ+ ∪ ℝ. Questions about the existence and uniqueness of the solutions are considered. In the case of nonuniqueness a description of all solutions is given which generalizes Potapov’s formula. Our results are obtained in two ways: in Sections 1–5 through the theory of selfadjoint extensions of a symmetric relation in a Hilbert space, including Krein’s formula and the socalled u-resolvent matrix, and in Sections 6 and 7 via the theory of reproducing kernel Hilbert spaces. More... »

PAGES

1-50

Book

TITLE

Operator Theory and Interpolation

ISBN

978-3-0348-9560-6
978-3-0348-8422-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8422-8_1

DOI

http://dx.doi.org/10.1007/978-3-0348-8422-8_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027404163


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Department of Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0024-3795(95)00700-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004531712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02559538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009068199", 
          "https://doi.org/10.1007/bf02559538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02786620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023301271", 
          "https://doi.org/10.1007/bf02786620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02786620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023301271", 
          "https://doi.org/10.1007/bf02786620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90064-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035417758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01200325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039094925", 
          "https://doi.org/10.1007/bf01200325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-5672-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042293429", 
          "https://doi.org/10.1007/978-3-0348-5672-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043632982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02020526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053174114", 
          "https://doi.org/10.1007/bf02020526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02020526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053174114", 
          "https://doi.org/10.1007/bf02020526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1977.72.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069067067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/trans2/097/06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089183841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098722335"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "We consider a scalar Nevanlinna-Pick interpolation problem with at most countably many interpolation points which lie in \u2102+ \u222a \u211d. Questions about the existence and uniqueness of the solutions are considered. In the case of nonuniqueness a description of all solutions is given which generalizes Potapov\u2019s formula. Our results are obtained in two ways: in Sections 1\u20135 through the theory of selfadjoint extensions of a symmetric relation in a Hilbert space, including Krein\u2019s formula and the socalled u-resolvent matrix, and in Sections 6 and 7 via the theory of reproducing kernel Hilbert spaces.", 
    "editor": [
      {
        "familyName": "Bercovici", 
        "givenName": "Hari", 
        "type": "Person"
      }, 
      {
        "familyName": "Foias", 
        "givenName": "Ciprian I.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8422-8_1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9560-6", 
        "978-3-0348-8422-8"
      ], 
      "name": "Operator Theory and Interpolation", 
      "type": "Book"
    }, 
    "name": "Classical Nevanlinna-Pick Interpolation with Real Interpolation Points", 
    "pagination": "1-50", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027404163"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8422-8_1"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "828b483e20a17acc55bb7d400121dd5d12d5e9e060d8f75442772d110632906e"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8422-8_1", 
      "https://app.dimensions.ai/details/publication/pub.1027404163"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88236_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8422-8_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8422-8_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8422-8_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8422-8_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8422-8_1'


 

This table displays all metadata directly associated to this object as RDF triples.

131 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8422-8_1 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N602ff0a2361c4e2fbb5f6307939c180e
4 schema:citation sg:pub.10.1007/978-3-0348-5672-0_3
5 sg:pub.10.1007/978-3-0348-7709-1
6 sg:pub.10.1007/bf01200325
7 sg:pub.10.1007/bf02020526
8 sg:pub.10.1007/bf02559538
9 sg:pub.10.1007/bf02786620
10 https://app.dimensions.ai/details/publication/pub.1043632982
11 https://doi.org/10.1016/0022-1236(78)90064-2
12 https://doi.org/10.1016/0024-3795(95)00700-8
13 https://doi.org/10.1090/cbms/071
14 https://doi.org/10.1090/trans2/097/06
15 https://doi.org/10.2140/pjm.1977.72.135
16 schema:datePublished 2000
17 schema:datePublishedReg 2000-01-01
18 schema:description We consider a scalar Nevanlinna-Pick interpolation problem with at most countably many interpolation points which lie in ℂ+ ∪ ℝ. Questions about the existence and uniqueness of the solutions are considered. In the case of nonuniqueness a description of all solutions is given which generalizes Potapov’s formula. Our results are obtained in two ways: in Sections 1–5 through the theory of selfadjoint extensions of a symmetric relation in a Hilbert space, including Krein’s formula and the socalled u-resolvent matrix, and in Sections 6 and 7 via the theory of reproducing kernel Hilbert spaces.
19 schema:editor Nc99f4fd394c249c19c33d10432c73343
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N0ff1b359dcb54b719991caad7542400a
24 schema:name Classical Nevanlinna-Pick Interpolation with Real Interpolation Points
25 schema:pagination 1-50
26 schema:productId N1deb97eebe074d17b3ced0ad503416a7
27 N2c332234ca9b4d6eb0bb8e11bd1c5b9e
28 Ncd29afcfd0b646c2b57843a99beb1698
29 schema:publisher N0b2451fbe8e34db6ba961c110b5faaf6
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027404163
31 https://doi.org/10.1007/978-3-0348-8422-8_1
32 schema:sdDatePublished 2019-04-16T08:46
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N0d4d65bb38b545b1a15c9fd456f9612f
35 schema:url https://link.springer.com/10.1007%2F978-3-0348-8422-8_1
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N02bcd1ca486f4e758e3f2d8c3ee25c5a schema:familyName Bercovici
40 schema:givenName Hari
41 rdf:type schema:Person
42 N0b2451fbe8e34db6ba961c110b5faaf6 schema:location Basel
43 schema:name Birkhäuser Basel
44 rdf:type schema:Organisation
45 N0d4d65bb38b545b1a15c9fd456f9612f schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 N0ff1b359dcb54b719991caad7542400a schema:isbn 978-3-0348-8422-8
48 978-3-0348-9560-6
49 schema:name Operator Theory and Interpolation
50 rdf:type schema:Book
51 N1deb97eebe074d17b3ced0ad503416a7 schema:name doi
52 schema:value 10.1007/978-3-0348-8422-8_1
53 rdf:type schema:PropertyValue
54 N2c332234ca9b4d6eb0bb8e11bd1c5b9e schema:name dimensions_id
55 schema:value pub.1027404163
56 rdf:type schema:PropertyValue
57 N3a342f620a4d47baa2322563cf296181 rdf:first Nee50fcba2925449bb9f9c43139ce853a
58 rdf:rest rdf:nil
59 N4fe560d396aa4f5fae433813e2c35fda rdf:first sg:person.07450173411.71
60 rdf:rest rdf:nil
61 N602ff0a2361c4e2fbb5f6307939c180e rdf:first sg:person.011517101346.40
62 rdf:rest N687eeefd43c9497189df7de648baa8c6
63 N687eeefd43c9497189df7de648baa8c6 rdf:first sg:person.013762723211.39
64 rdf:rest N4fe560d396aa4f5fae433813e2c35fda
65 Nc99f4fd394c249c19c33d10432c73343 rdf:first N02bcd1ca486f4e758e3f2d8c3ee25c5a
66 rdf:rest N3a342f620a4d47baa2322563cf296181
67 Ncd29afcfd0b646c2b57843a99beb1698 schema:name readcube_id
68 schema:value 828b483e20a17acc55bb7d400121dd5d12d5e9e060d8f75442772d110632906e
69 rdf:type schema:PropertyValue
70 Nee50fcba2925449bb9f9c43139ce853a schema:familyName Foias
71 schema:givenName Ciprian I.
72 rdf:type schema:Person
73 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
74 schema:name Mathematical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
77 schema:name Pure Mathematics
78 rdf:type schema:DefinedTerm
79 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
80 schema:familyName Alpay
81 schema:givenName Daniel
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
83 rdf:type schema:Person
84 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
85 schema:familyName Dijksma
86 schema:givenName Aad
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
88 rdf:type schema:Person
89 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
90 schema:familyName Langer
91 schema:givenName Heinz
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
93 rdf:type schema:Person
94 sg:pub.10.1007/978-3-0348-5672-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042293429
95 https://doi.org/10.1007/978-3-0348-5672-0_3
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/978-3-0348-7709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632982
98 https://doi.org/10.1007/978-3-0348-7709-1
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf01200325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039094925
101 https://doi.org/10.1007/bf01200325
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf02020526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053174114
104 https://doi.org/10.1007/bf02020526
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf02559538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009068199
107 https://doi.org/10.1007/bf02559538
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02786620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023301271
110 https://doi.org/10.1007/bf02786620
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1043632982 schema:CreativeWork
113 https://doi.org/10.1016/0022-1236(78)90064-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035417758
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0024-3795(95)00700-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004531712
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1090/cbms/071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098722335
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1090/trans2/097/06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089183841
120 rdf:type schema:CreativeWork
121 https://doi.org/10.2140/pjm.1977.72.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069067067
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
124 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
127 schema:name Department of Mathematics, Technical University of Vienna, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
128 rdf:type schema:Organization
129 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
130 schema:name Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
131 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...