Self-adjoint Operators with Inner Singularities and Pontryagin Spaces View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2000

AUTHORS

Aad Dijksma , Heinz Langer , Yuri Shondin , Chris Zeinstra

ABSTRACT

Let A0 be an unbounded self-adjoint operator in a Hilbert space H0 and let χ be a generalized element of order — m — 1 in the rigging associated with A0 and the inner product 〈·, ·〉0 of H0. In [S1, S2, S3] operators Ht, t · R ∪ ∞, are defined which serve as an interpretation for the family of operators A0 + t-1 〈·, χ〉0 χ. The second summand here contains the inner singularity mentioned in the title. The operators Ht act in Pontryagin spaces of the form πm = H0⊕Cm⊕Cmwhere the direct summand space Cm ⊕ Cmis provided with an indefinite inner product. They can be interpreted both as a canonical extension of some symmetric operator S in πm and also as extensions of a one-dimensional restriction S0 of A0 in H0 and hence they can be characterized by a class of Straus extensions of S0 as well as via M.G. Krein’s formulas for (generalized) resolvents. In this paper we describe both these realizations explicitly and study their spectral properties. A main role is played by a special class of Q-functions. Factorizations of these functions correspond to the separation of the nonpositive type spectrum from the positive spectrum of Ht. As a consequence, in Subsection 7.3 a family of self-adjoint Hilbert space operators is obtained which can serve as a nontrivial quantum model associated with the operators A0 + t-1 〈·, χ〉0 χ. More... »

PAGES

105-175

References to SciGraph publications

Book

TITLE

Operator Theory and Related Topics

ISBN

978-3-0348-9557-6
978-3-0348-8413-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8413-6_8

DOI

http://dx.doi.org/10.1007/978-3-0348-8413-6_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000870627


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, 9700, AV Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Department of Mathematics, Technical University of Vienna, Wiedner Haupsstrasse 8-10/1411, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Theoretical Physics, State Pedagogical University, Str. Uly\u2019anova 1, 603600, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "VU University Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.12380.38", 
          "name": [
            "Department of Mathematics, Free University, De Boelelaan 1081a, 1081, HV Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeinstra", 
        "givenName": "Chris", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mana.19851200123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007624556", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8908-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007624556", 
          "https://doi.org/10.1007/978-3-0348-8908-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8908-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007624556", 
          "https://doi.org/10.1007/978-3-0348-8908-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7698-8_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008400943", 
          "https://doi.org/10.1007/978-3-0348-7698-8_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65567-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011407145", 
          "https://doi.org/10.1007/978-3-642-65567-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017336779", 
          "https://doi.org/10.1007/bf01238863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022022758", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88201-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022022758", 
          "https://doi.org/10.1007/978-3-642-88201-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88201-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022022758", 
          "https://doi.org/10.1007/978-3-642-88201-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01016615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039082334", 
          "https://doi.org/10.1007/bf01016615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01016615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039082334", 
          "https://doi.org/10.1007/bf01016615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8606-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042050982", 
          "https://doi.org/10.1007/978-3-0348-8606-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8606-2_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042050982", 
          "https://doi.org/10.1007/978-3-0348-8606-2_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01017080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052515491", 
          "https://doi.org/10.1007/bf01017080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01017080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052515491", 
          "https://doi.org/10.1007/bf01017080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500009914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054892753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.529404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058106419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1977.72.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069067067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1986.125.347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069069157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5186/aasfm.1987.1208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072648451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/fim/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098723787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567839"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2000", 
    "datePublishedReg": "2000-01-01", 
    "description": "Let A0 be an unbounded self-adjoint operator in a Hilbert space H0 and let \u03c7 be a generalized element of order \u2014 m \u2014 1 in the rigging associated with A0 and the inner product \u3008\u00b7, \u00b7\u30090 of H0. In [S1, S2, S3] operators Ht, t \u00b7 R \u222a \u221e, are defined which serve as an interpretation for the family of operators A0 + t-1 \u3008\u00b7, \u03c7\u30090 \u03c7. The second summand here contains the inner singularity mentioned in the title. The operators Ht act in Pontryagin spaces of the form \u03c0m = H0\u2295Cm\u2295Cmwhere the direct summand space Cm \u2295 Cmis provided with an indefinite inner product. They can be interpreted both as a canonical extension of some symmetric operator S in \u03c0m and also as extensions of a one-dimensional restriction S0 of A0 in H0 and hence they can be characterized by a class of Straus extensions of S0 as well as via M.G. Krein\u2019s formulas for (generalized) resolvents. In this paper we describe both these realizations explicitly and study their spectral properties. A main role is played by a special class of Q-functions. Factorizations of these functions correspond to the separation of the nonpositive type spectrum from the positive spectrum of Ht. As a consequence, in Subsection 7.3 a family of self-adjoint Hilbert space operators is obtained which can serve as a nontrivial quantum model associated with the operators A0 + t-1 \u3008\u00b7, \u03c7\u30090 \u03c7.", 
    "editor": [
      {
        "familyName": "Adamyan", 
        "givenName": "V. M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gohberg", 
        "givenName": "I.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gorbachuk", 
        "givenName": "M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Gorbachuk", 
        "givenName": "V.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaashoek", 
        "givenName": "M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Langer", 
        "givenName": "H.", 
        "type": "Person"
      }, 
      {
        "familyName": "Popov", 
        "givenName": "G.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9557-6", 
        "978-3-0348-8413-6"
      ], 
      "name": "Operator Theory and Related Topics", 
      "type": "Book"
    }, 
    "name": "Self-adjoint Operators with Inner Singularities and Pontryagin Spaces", 
    "pagination": "105-175", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000870627"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8413-6_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0425b50615652bd7835103170cdc23de7fa30d3e37d7f5da8a5e44697ba8c2fa"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8413-6_8", 
      "https://app.dimensions.ai/details/publication/pub.1000870627"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8413-6_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8413-6_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8413-6_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8413-6_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8413-6_8'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8413-6_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5ba60d8231304ae686b6359496b400cc
4 schema:citation sg:pub.10.1007/978-3-0348-7698-8_15
5 sg:pub.10.1007/978-3-0348-8606-2_13
6 sg:pub.10.1007/978-3-0348-8908-7
7 sg:pub.10.1007/978-3-642-65567-8
8 sg:pub.10.1007/978-3-642-88201-2
9 sg:pub.10.1007/bf01016615
10 sg:pub.10.1007/bf01017080
11 sg:pub.10.1007/bf01238863
12 https://app.dimensions.ai/details/publication/pub.1007624556
13 https://app.dimensions.ai/details/publication/pub.1022022758
14 https://doi.org/10.1002/mana.19770770116
15 https://doi.org/10.1002/mana.19851200123
16 https://doi.org/10.1017/s0308210500009914
17 https://doi.org/10.1063/1.529404
18 https://doi.org/10.1090/fim/003
19 https://doi.org/10.1090/mmono/017
20 https://doi.org/10.1090/mmono/063
21 https://doi.org/10.2140/pjm.1977.72.135
22 https://doi.org/10.2140/pjm.1986.125.347
23 https://doi.org/10.5186/aasfm.1987.1208
24 schema:datePublished 2000
25 schema:datePublishedReg 2000-01-01
26 schema:description Let A0 be an unbounded self-adjoint operator in a Hilbert space H0 and let χ be a generalized element of order — m — 1 in the rigging associated with A0 and the inner product 〈·, ·〉0 of H0. In [S1, S2, S3] operators Ht, t · R ∪ ∞, are defined which serve as an interpretation for the family of operators A0 + t-1 〈·, χ〉0 χ. The second summand here contains the inner singularity mentioned in the title. The operators Ht act in Pontryagin spaces of the form πm = H0⊕Cm⊕Cmwhere the direct summand space Cm ⊕ Cmis provided with an indefinite inner product. They can be interpreted both as a canonical extension of some symmetric operator S in πm and also as extensions of a one-dimensional restriction S0 of A0 in H0 and hence they can be characterized by a class of Straus extensions of S0 as well as via M.G. Krein’s formulas for (generalized) resolvents. In this paper we describe both these realizations explicitly and study their spectral properties. A main role is played by a special class of Q-functions. Factorizations of these functions correspond to the separation of the nonpositive type spectrum from the positive spectrum of Ht. As a consequence, in Subsection 7.3 a family of self-adjoint Hilbert space operators is obtained which can serve as a nontrivial quantum model associated with the operators A0 + t-1 〈·, χ〉0 χ.
27 schema:editor N78980335b6664ee4a4d520f86b77edd1
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N6ecae9cbb1504d1a9daa71a38e2f1cb6
32 schema:name Self-adjoint Operators with Inner Singularities and Pontryagin Spaces
33 schema:pagination 105-175
34 schema:productId N0f55eff8e4ea4715b2078556a6fdc779
35 N28ce84751bfd469f901dd6c6b6c31329
36 Nc33b01e5e21341b68db4a9422741fd30
37 schema:publisher N73f8edb7c9c5463a903aa02d3ce90ec6
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000870627
39 https://doi.org/10.1007/978-3-0348-8413-6_8
40 schema:sdDatePublished 2019-04-16T09:12
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N817a73891af2475ebd77ae9a843c1127
43 schema:url https://link.springer.com/10.1007%2F978-3-0348-8413-6_8
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N0c0075dbbe424130b6ce758f37a1d93e rdf:first N7253165aeff4426c9fdcccf1c5700e26
48 rdf:rest rdf:nil
49 N0ebf3a645b3e42918f08ef52b91dd884 rdf:first N2be8b68bdcf74f939ebeba4331265c21
50 rdf:rest N44bb3257f54c46f6a5ee37686304c5ec
51 N0f55eff8e4ea4715b2078556a6fdc779 schema:name readcube_id
52 schema:value 0425b50615652bd7835103170cdc23de7fa30d3e37d7f5da8a5e44697ba8c2fa
53 rdf:type schema:PropertyValue
54 N28ce84751bfd469f901dd6c6b6c31329 schema:name dimensions_id
55 schema:value pub.1000870627
56 rdf:type schema:PropertyValue
57 N2aac91117f5d4eb6bccbd8ce364e5894 schema:familyName Gohberg
58 schema:givenName I.
59 rdf:type schema:Person
60 N2be8b68bdcf74f939ebeba4331265c21 schema:familyName Kaashoek
61 schema:givenName M. A.
62 rdf:type schema:Person
63 N44bb3257f54c46f6a5ee37686304c5ec rdf:first Nad6dc57bddec425c8d225af28162dd63
64 rdf:rest N0c0075dbbe424130b6ce758f37a1d93e
65 N45ee56f25b2749179a5590337b2efa2c schema:affiliation https://www.grid.ac/institutes/grid.12380.38
66 schema:familyName Zeinstra
67 schema:givenName Chris
68 rdf:type schema:Person
69 N490ae09c41e34617a7b862d73e721789 schema:name Department of Theoretical Physics, State Pedagogical University, Str. Uly’anova 1, 603600, Nizhny Novgorod, Russia
70 rdf:type schema:Organization
71 N4aa0f22a26294a4289b5bd8c8cdfe6d6 rdf:first sg:person.015771172577.94
72 rdf:rest N90285b0bb6c245678c21f23c90282724
73 N5ba60d8231304ae686b6359496b400cc rdf:first sg:person.013762723211.39
74 rdf:rest N6ba0ba4bac8348f99b3d637e36cd5312
75 N6ba0ba4bac8348f99b3d637e36cd5312 rdf:first sg:person.07450173411.71
76 rdf:rest N4aa0f22a26294a4289b5bd8c8cdfe6d6
77 N6cf3cb928798424287f5611c4d8e1f6b schema:familyName Adamyan
78 schema:givenName V. M.
79 rdf:type schema:Person
80 N6ecae9cbb1504d1a9daa71a38e2f1cb6 schema:isbn 978-3-0348-8413-6
81 978-3-0348-9557-6
82 schema:name Operator Theory and Related Topics
83 rdf:type schema:Book
84 N7253165aeff4426c9fdcccf1c5700e26 schema:familyName Popov
85 schema:givenName G.
86 rdf:type schema:Person
87 N73f8edb7c9c5463a903aa02d3ce90ec6 schema:location Basel
88 schema:name Birkhäuser Basel
89 rdf:type schema:Organisation
90 N78980335b6664ee4a4d520f86b77edd1 rdf:first N6cf3cb928798424287f5611c4d8e1f6b
91 rdf:rest Nf449463c55bf45c0a27a9325ed25b9a0
92 N817a73891af2475ebd77ae9a843c1127 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N8c057af9686f4cdcaecfb1194d29723e schema:familyName Gorbachuk
95 schema:givenName M.
96 rdf:type schema:Person
97 N8ec40ea8fb5a4ca3a1be9f436513503d schema:familyName Gorbachuk
98 schema:givenName V.
99 rdf:type schema:Person
100 N90285b0bb6c245678c21f23c90282724 rdf:first N45ee56f25b2749179a5590337b2efa2c
101 rdf:rest rdf:nil
102 Nad6dc57bddec425c8d225af28162dd63 schema:familyName Langer
103 schema:givenName H.
104 rdf:type schema:Person
105 Nc33b01e5e21341b68db4a9422741fd30 schema:name doi
106 schema:value 10.1007/978-3-0348-8413-6_8
107 rdf:type schema:PropertyValue
108 Ne6c711b37be04b54bba6361b31761e76 rdf:first N8ec40ea8fb5a4ca3a1be9f436513503d
109 rdf:rest N0ebf3a645b3e42918f08ef52b91dd884
110 Nf449463c55bf45c0a27a9325ed25b9a0 rdf:first N2aac91117f5d4eb6bccbd8ce364e5894
111 rdf:rest Nfa34ccc451b5485a94e3ef7f17cfb096
112 Nfa34ccc451b5485a94e3ef7f17cfb096 rdf:first N8c057af9686f4cdcaecfb1194d29723e
113 rdf:rest Ne6c711b37be04b54bba6361b31761e76
114 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
115 schema:name Mathematical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
118 schema:name Pure Mathematics
119 rdf:type schema:DefinedTerm
120 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
121 schema:familyName Dijksma
122 schema:givenName Aad
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
124 rdf:type schema:Person
125 sg:person.015771172577.94 schema:affiliation N490ae09c41e34617a7b862d73e721789
126 schema:familyName Shondin
127 schema:givenName Yuri
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
129 rdf:type schema:Person
130 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
131 schema:familyName Langer
132 schema:givenName Heinz
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
134 rdf:type schema:Person
135 sg:pub.10.1007/978-3-0348-7698-8_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008400943
136 https://doi.org/10.1007/978-3-0348-7698-8_15
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/978-3-0348-8606-2_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042050982
139 https://doi.org/10.1007/978-3-0348-8606-2_13
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-0348-8908-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007624556
142 https://doi.org/10.1007/978-3-0348-8908-7
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-642-65567-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011407145
145 https://doi.org/10.1007/978-3-642-65567-8
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-642-88201-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022022758
148 https://doi.org/10.1007/978-3-642-88201-2
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/bf01016615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039082334
151 https://doi.org/10.1007/bf01016615
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf01017080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052515491
154 https://doi.org/10.1007/bf01017080
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf01238863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017336779
157 https://doi.org/10.1007/bf01238863
158 rdf:type schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1007624556 schema:CreativeWork
160 https://app.dimensions.ai/details/publication/pub.1022022758 schema:CreativeWork
161 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/mana.19851200123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001182196
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1017/s0308210500009914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054892753
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1063/1.529404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058106419
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1090/fim/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098723787
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1090/mmono/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567794
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1090/mmono/063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567839
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2140/pjm.1977.72.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069067067
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2140/pjm.1986.125.347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069069157
178 rdf:type schema:CreativeWork
179 https://doi.org/10.5186/aasfm.1987.1208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072648451
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.12380.38 schema:alternateName VU University Amsterdam
182 schema:name Department of Mathematics, Free University, De Boelelaan 1081a, 1081, HV Amsterdam, The Netherlands
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
185 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700, AV Groningen, The Netherlands
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
188 schema:name Department of Mathematics, Technical University of Vienna, Wiedner Haupsstrasse 8-10/1411, A-1040, Vienna, Austria
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...