Two-sided Tangential Interpolation for Hilbert-Schmidt Operator Functions on Polydisks View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

Daniel Alpay , Vladimir Bolotnikov , Leiba Rodman

ABSTRACT

Bitangential interpolation problems are formulated for the class of Hilbert-Schmidt operator-valued functions, which are analytic on a polydisk and have square summable power series. A procedure is described for reduction of the problems in d-disk to the analogous problems in (d - 1)-disk. Using this procedure, for the case of the bidisk, the minimal norm solutions are explicitly described in terms of the interpolation data, and formulas for the general solution are obtained. More... »

PAGES

21-62

Book

TITLE

Recent Advances in Operator Theory

ISBN

978-3-0348-9516-3
978-3-0348-8323-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8323-8_2

DOI

http://dx.doi.org/10.1007/978-3-0348-8323-8_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048542147


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodman", 
        "givenName": "Leiba", 
        "id": "sg:person.0727056254.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727056254.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01193902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004773539", 
          "https://doi.org/10.1007/bf01193902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01193902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004773539", 
          "https://doi.org/10.1007/bf01193902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmaa.1996.0192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005321408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1008941350", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7712-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008941350", 
          "https://doi.org/10.1007/978-3-0348-7712-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7712-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008941350", 
          "https://doi.org/10.1007/978-3-0348-7712-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022976666", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8791-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022976666", 
          "https://doi.org/10.1007/978-3-0348-8791-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8791-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022976666", 
          "https://doi.org/10.1007/978-3-0348-8791-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-99-04651-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025239367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(94)00074-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030446739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043632982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01193505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046510170", 
          "https://doi.org/10.1007/bf01193505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01193505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046510170", 
          "https://doi.org/10.1007/bf01193505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1998.3278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047954570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8944-5_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048429229", 
          "https://doi.org/10.1007/978-3-0348-8944-5_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00047026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049796636", 
          "https://doi.org/10.1007/bf00047026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00047026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049796636", 
          "https://doi.org/10.1007/bf00047026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100030401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053843559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0273-0979-1994-00499-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059338941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/cbms/071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098722335"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "Bitangential interpolation problems are formulated for the class of Hilbert-Schmidt operator-valued functions, which are analytic on a polydisk and have square summable power series. A procedure is described for reduction of the problems in d-disk to the analogous problems in (d - 1)-disk. Using this procedure, for the case of the bidisk, the minimal norm solutions are explicitly described in terms of the interpolation data, and formulas for the general solution are obtained.", 
    "editor": [
      {
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaashoek", 
        "givenName": "M. A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Ran", 
        "givenName": "A. C. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8323-8_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9516-3", 
        "978-3-0348-8323-8"
      ], 
      "name": "Recent Advances in Operator Theory", 
      "type": "Book"
    }, 
    "name": "Two-sided Tangential Interpolation for Hilbert-Schmidt Operator Functions on Polydisks", 
    "pagination": "21-62", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048542147"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8323-8_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e73f154fc65e62f1e178b6857fb11ef0bcd463017451945a445dffcb89800478"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8323-8_2", 
      "https://app.dimensions.ai/details/publication/pub.1048542147"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46760_00000002.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8323-8_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8323-8_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8323-8_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8323-8_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8323-8_2'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8323-8_2 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N6a4a0e48ef124468945053f83342539d
4 schema:citation sg:pub.10.1007/978-3-0348-7709-1
5 sg:pub.10.1007/978-3-0348-7712-1
6 sg:pub.10.1007/978-3-0348-8791-5
7 sg:pub.10.1007/978-3-0348-8944-5_3
8 sg:pub.10.1007/bf00047026
9 sg:pub.10.1007/bf01193505
10 sg:pub.10.1007/bf01193902
11 https://app.dimensions.ai/details/publication/pub.1008941350
12 https://app.dimensions.ai/details/publication/pub.1022976666
13 https://app.dimensions.ai/details/publication/pub.1043632982
14 https://doi.org/10.1006/jfan.1998.3278
15 https://doi.org/10.1006/jmaa.1996.0192
16 https://doi.org/10.1016/0024-3795(94)00074-n
17 https://doi.org/10.1017/s0305004100030401
18 https://doi.org/10.1090/cbms/071
19 https://doi.org/10.1090/s0002-9939-99-04651-1
20 https://doi.org/10.1090/s0273-0979-1994-00499-9
21 schema:datePublished 2001
22 schema:datePublishedReg 2001-01-01
23 schema:description Bitangential interpolation problems are formulated for the class of Hilbert-Schmidt operator-valued functions, which are analytic on a polydisk and have square summable power series. A procedure is described for reduction of the problems in d-disk to the analogous problems in (d - 1)-disk. Using this procedure, for the case of the bidisk, the minimal norm solutions are explicitly described in terms of the interpolation data, and formulas for the general solution are obtained.
24 schema:editor N6b8b8e4fe3ac4f499d7851868014f899
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N98e497236f8e4fa7a07295bb9c272b1b
29 schema:name Two-sided Tangential Interpolation for Hilbert-Schmidt Operator Functions on Polydisks
30 schema:pagination 21-62
31 schema:productId N635e1d23ecb24a1ebd59b6a909858460
32 N6b8b1c04d54e4181af4e4753ace08cfe
33 N9f5c221e1f3e494f932b57039be14a2c
34 schema:publisher N59e97d26ff424ab189c09fe1d68b658d
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048542147
36 https://doi.org/10.1007/978-3-0348-8323-8_2
37 schema:sdDatePublished 2019-04-16T09:05
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nebd735698e1b4b2481917fca93165ef9
40 schema:url https://link.springer.com/10.1007%2F978-3-0348-8323-8_2
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N1aa66f8700a04a948633b94dfb254d23 rdf:first sg:person.01130533744.43
45 rdf:rest N2d195cb7c47c4830adffae52c2a88fe2
46 N2d195cb7c47c4830adffae52c2a88fe2 rdf:first sg:person.0727056254.14
47 rdf:rest rdf:nil
48 N38bf6c5c7dee449a8b4abae436180879 schema:familyName Dijksma
49 schema:givenName A.
50 rdf:type schema:Person
51 N572f8c83dead434caac6394673669e64 rdf:first N7d4eee0f0abd464e96fd65051e97eaa9
52 rdf:rest rdf:nil
53 N59e97d26ff424ab189c09fe1d68b658d schema:location Basel
54 schema:name Birkhäuser Basel
55 rdf:type schema:Organisation
56 N5c7cf2bc259a410e9b07355a43e0196d rdf:first Na5605134b5884390ac7166d4e811b3c3
57 rdf:rest N572f8c83dead434caac6394673669e64
58 N635e1d23ecb24a1ebd59b6a909858460 schema:name doi
59 schema:value 10.1007/978-3-0348-8323-8_2
60 rdf:type schema:PropertyValue
61 N6a4a0e48ef124468945053f83342539d rdf:first sg:person.011517101346.40
62 rdf:rest N1aa66f8700a04a948633b94dfb254d23
63 N6b8b1c04d54e4181af4e4753ace08cfe schema:name readcube_id
64 schema:value e73f154fc65e62f1e178b6857fb11ef0bcd463017451945a445dffcb89800478
65 rdf:type schema:PropertyValue
66 N6b8b8e4fe3ac4f499d7851868014f899 rdf:first N38bf6c5c7dee449a8b4abae436180879
67 rdf:rest N5c7cf2bc259a410e9b07355a43e0196d
68 N7d4eee0f0abd464e96fd65051e97eaa9 schema:familyName Ran
69 schema:givenName A. C. M.
70 rdf:type schema:Person
71 N98e497236f8e4fa7a07295bb9c272b1b schema:isbn 978-3-0348-8323-8
72 978-3-0348-9516-3
73 schema:name Recent Advances in Operator Theory
74 rdf:type schema:Book
75 N9f5c221e1f3e494f932b57039be14a2c schema:name dimensions_id
76 schema:value pub.1048542147
77 rdf:type schema:PropertyValue
78 Na5605134b5884390ac7166d4e811b3c3 schema:familyName Kaashoek
79 schema:givenName M. A.
80 rdf:type schema:Person
81 Nebd735698e1b4b2481917fca93165ef9 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
87 schema:name Electrical and Electronic Engineering
88 rdf:type schema:DefinedTerm
89 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
90 schema:familyName Bolotnikov
91 schema:givenName Vladimir
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
93 rdf:type schema:Person
94 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
95 schema:familyName Alpay
96 schema:givenName Daniel
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
98 rdf:type schema:Person
99 sg:person.0727056254.14 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
100 schema:familyName Rodman
101 schema:givenName Leiba
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727056254.14
103 rdf:type schema:Person
104 sg:pub.10.1007/978-3-0348-7709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632982
105 https://doi.org/10.1007/978-3-0348-7709-1
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/978-3-0348-7712-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008941350
108 https://doi.org/10.1007/978-3-0348-7712-1
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/978-3-0348-8791-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022976666
111 https://doi.org/10.1007/978-3-0348-8791-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-0348-8944-5_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048429229
114 https://doi.org/10.1007/978-3-0348-8944-5_3
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf00047026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049796636
117 https://doi.org/10.1007/bf00047026
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf01193505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046510170
120 https://doi.org/10.1007/bf01193505
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf01193902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004773539
123 https://doi.org/10.1007/bf01193902
124 rdf:type schema:CreativeWork
125 https://app.dimensions.ai/details/publication/pub.1008941350 schema:CreativeWork
126 https://app.dimensions.ai/details/publication/pub.1022976666 schema:CreativeWork
127 https://app.dimensions.ai/details/publication/pub.1043632982 schema:CreativeWork
128 https://doi.org/10.1006/jfan.1998.3278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047954570
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1006/jmaa.1996.0192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005321408
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0024-3795(94)00074-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1030446739
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1017/s0305004100030401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053843559
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1090/cbms/071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098722335
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1090/s0002-9939-99-04651-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025239367
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1090/s0273-0979-1994-00499-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059338941
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
143 schema:name Department of Mathematics, College of William and Mary, 23187-8795, Williamsburg, VA, USA
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
146 schema:name Department of Mathematics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...