Formal Brauer Groups and Moduli of Abelian Surfaces View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001

AUTHORS

G. Van der Geer , T. Katsura

ABSTRACT

LetXbe an algebraic surface over an algebraically closed fieldkof characteristicp >0. We denote by Фx the formal Brauer group ofXand byh = h(Фx)the height of Фx. In a previous paper, [6], we examined the structure of the stratification given by the heighthin the moduli space of K3 surfaces, and we determined the cycle class of each stratum. We also showed that the final stratum is non-reduced. In this paper, we use the methods of [6] to treat the case of abelian surfaces. In this case, the situation is more concrete, and so we can more easily determine the structure of the stratification given by the height h(Ф.A) in the moduli of abelian surfaces. For the local structure we refer to [20]. More... »

PAGES

185-202

Book

TITLE

Moduli of Abelian Varieties

ISBN

978-3-0348-9509-5
978-3-0348-8303-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8303-0_6

DOI

http://dx.doi.org/10.1007/978-3-0348-8303-0_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012498874


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Van der Geer", 
        "givenName": "G.", 
        "id": "sg:person.011551332252.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Katsura", 
        "givenName": "T.", 
        "id": "sg:person.015247537115.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247537115.90"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "LetXbe an algebraic surface over an algebraically closed fieldkof characteristicp >0. We denote by \u0424x the formal Brauer group ofXand byh = h(\u0424x)the height of \u0424x. In a previous paper, [6], we examined the structure of the stratification given by the heighthin the moduli space of K3 surfaces, and we determined the cycle class of each stratum. We also showed that the final stratum is non-reduced. In this paper, we use the methods of [6] to treat the case of abelian surfaces. In this case, the situation is more concrete, and so we can more easily determine the structure of the stratification given by the height h(\u0424.A) in the moduli of abelian surfaces. For the local structure we refer to [20].", 
    "editor": [
      {
        "familyName": "Faber", 
        "givenName": "Carel", 
        "type": "Person"
      }, 
      {
        "familyName": "van der Geer", 
        "givenName": "Gerard", 
        "type": "Person"
      }, 
      {
        "familyName": "Oort", 
        "givenName": "Frans", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8303-0_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9509-5", 
        "978-3-0348-8303-0"
      ], 
      "name": "Moduli of Abelian Varieties", 
      "type": "Book"
    }, 
    "keywords": [
      "modulus", 
      "surface", 
      "height", 
      "structure", 
      "previous paper", 
      "local structure", 
      "stratification", 
      "method", 
      "cycle classes", 
      "strata", 
      "cases", 
      "space", 
      "situation", 
      "class", 
      "byH", 
      "group", 
      "characteristicp", 
      "abelian surfaces", 
      "algebraic surfaces", 
      "K3 surfaces", 
      "paper", 
      "moduli space", 
      "Brauer group", 
      "fieldkof characteristicp", 
      "formal Brauer group ofXand byh", 
      "Brauer group ofXand byh", 
      "group ofXand byh", 
      "ofXand byh", 
      "heighthin", 
      "final stratum", 
      "Formal Brauer Groups"
    ], 
    "name": "Formal Brauer Groups and Moduli of Abelian Surfaces", 
    "pagination": "185-202", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012498874"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8303-0_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8303-0_6", 
      "https://app.dimensions.ai/details/publication/pub.1012498874"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_294.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-0348-8303-0_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8303-0_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8303-0_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8303-0_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8303-0_6'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      57 URIs      50 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8303-0_6 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Na8ec57be49514232a885ba8356804e93
4 schema:datePublished 2001
5 schema:datePublishedReg 2001-01-01
6 schema:description LetXbe an algebraic surface over an algebraically closed fieldkof characteristicp >0. We denote by Фx the formal Brauer group ofXand byh = h(Фx)the height of Фx. In a previous paper, [6], we examined the structure of the stratification given by the heighthin the moduli space of K3 surfaces, and we determined the cycle class of each stratum. We also showed that the final stratum is non-reduced. In this paper, we use the methods of [6] to treat the case of abelian surfaces. In this case, the situation is more concrete, and so we can more easily determine the structure of the stratification given by the height h(Ф.A) in the moduli of abelian surfaces. For the local structure we refer to [20].
7 schema:editor N0bb0efee005b4f79aa6d2b9207404708
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Nd6d9f06f06db40c08873e7e0a4f30dcf
12 schema:keywords Brauer group
13 Brauer group ofXand byh
14 Formal Brauer Groups
15 K3 surfaces
16 abelian surfaces
17 algebraic surfaces
18 byH
19 cases
20 characteristicp
21 class
22 cycle classes
23 fieldkof characteristicp
24 final stratum
25 formal Brauer group ofXand byh
26 group
27 group ofXand byh
28 height
29 heighthin
30 local structure
31 method
32 moduli space
33 modulus
34 ofXand byh
35 paper
36 previous paper
37 situation
38 space
39 strata
40 stratification
41 structure
42 surface
43 schema:name Formal Brauer Groups and Moduli of Abelian Surfaces
44 schema:pagination 185-202
45 schema:productId N2b0ec028b0c741f895dc32d2efec6d5c
46 N8d879206a6fb4de7a9b9931ea14969fe
47 schema:publisher N11fa1c58d5894c0a893dec8f2a6af9e5
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012498874
49 https://doi.org/10.1007/978-3-0348-8303-0_6
50 schema:sdDatePublished 2021-12-01T20:03
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Ncb9e92d5ca6b4759937626119afa5e89
53 schema:url https://doi.org/10.1007/978-3-0348-8303-0_6
54 sgo:license sg:explorer/license/
55 sgo:sdDataset chapters
56 rdf:type schema:Chapter
57 N0bb0efee005b4f79aa6d2b9207404708 rdf:first N2ab3850a7b2549fc89d2d4bc804373c8
58 rdf:rest N6be5e4e0ff044161a46a1a87c69cf764
59 N11fa1c58d5894c0a893dec8f2a6af9e5 schema:name Springer Nature
60 rdf:type schema:Organisation
61 N2ab3850a7b2549fc89d2d4bc804373c8 schema:familyName Faber
62 schema:givenName Carel
63 rdf:type schema:Person
64 N2b0ec028b0c741f895dc32d2efec6d5c schema:name doi
65 schema:value 10.1007/978-3-0348-8303-0_6
66 rdf:type schema:PropertyValue
67 N6be5e4e0ff044161a46a1a87c69cf764 rdf:first Nb1c2658b4b884c1e927b8b1445b4755a
68 rdf:rest Nb4e191e152d04555a3fab465b40f4ebf
69 N8d879206a6fb4de7a9b9931ea14969fe schema:name dimensions_id
70 schema:value pub.1012498874
71 rdf:type schema:PropertyValue
72 Na0adb54c690244c0a4c251728f96f37b rdf:first sg:person.015247537115.90
73 rdf:rest rdf:nil
74 Na8ec57be49514232a885ba8356804e93 rdf:first sg:person.011551332252.27
75 rdf:rest Na0adb54c690244c0a4c251728f96f37b
76 Nb1c2658b4b884c1e927b8b1445b4755a schema:familyName van der Geer
77 schema:givenName Gerard
78 rdf:type schema:Person
79 Nb4e191e152d04555a3fab465b40f4ebf rdf:first Nc5f738a6e5a74e998a3296f3dcdab902
80 rdf:rest rdf:nil
81 Nc5f738a6e5a74e998a3296f3dcdab902 schema:familyName Oort
82 schema:givenName Frans
83 rdf:type schema:Person
84 Ncb9e92d5ca6b4759937626119afa5e89 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nd6d9f06f06db40c08873e7e0a4f30dcf schema:isbn 978-3-0348-8303-0
87 978-3-0348-9509-5
88 schema:name Moduli of Abelian Varieties
89 rdf:type schema:Book
90 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
91 schema:name Chemical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Chemistry (incl. Structural)
95 rdf:type schema:DefinedTerm
96 sg:person.011551332252.27 schema:familyName Van der Geer
97 schema:givenName G.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551332252.27
99 rdf:type schema:Person
100 sg:person.015247537115.90 schema:familyName Katsura
101 schema:givenName T.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015247537115.90
103 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...