Understanding Skyrmions Using Rational Maps View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2001

AUTHORS

Nicholas S. Manton , Bernard M. A. G. Piette

ABSTRACT

We discuss an ansatz for Skyrme fields in three dimensions which uses rational maps between Riemann spheres, and produces shell-like structures of polyhedral form. Houghton, Manton and Sutcliffe showed that a single rational map gives good approximations to the minimal energy Skyrmions up to baryon number of order 10. We show how the method can be generalized by using two or more rational maps to give a double-shell or multi-shell structure. Particularly interesting examples occur at baryon numbers 12 and 14. More... »

PAGES

469-479

Book

TITLE

European Congress of Mathematics

ISBN

978-3-0348-9497-5
978-3-0348-8268-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8268-2_27

DOI

http://dx.doi.org/10.1007/978-3-0348-8268-2_27

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042659746


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manton", 
        "givenName": "Nicholas S.", 
        "id": "sg:person.01364115404.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364115404.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Durham University", 
          "id": "https://www.grid.ac/institutes/grid.8250.f", 
          "name": [
            "Department of Mathematical Sciences, University of Durham, South Road, Durham, DH1 3LE, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piette", 
        "givenName": "Bernard M. A. G.", 
        "id": "sg:person.014121444104.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0370-2693(90)90111-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005800158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(90)90111-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005800158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024993984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024993984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039701592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.3989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039701592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00619-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049288648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9474(89)90161-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053228541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9474(89)90161-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053228541"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "We discuss an ansatz for Skyrme fields in three dimensions which uses rational maps between Riemann spheres, and produces shell-like structures of polyhedral form. Houghton, Manton and Sutcliffe showed that a single rational map gives good approximations to the minimal energy Skyrmions up to baryon number of order 10. We show how the method can be generalized by using two or more rational maps to give a double-shell or multi-shell structure. Particularly interesting examples occur at baryon numbers 12 and 14.", 
    "editor": [
      {
        "familyName": "Casacuberta", 
        "givenName": "Carles", 
        "type": "Person"
      }, 
      {
        "familyName": "Mir\u00f3-Roig", 
        "givenName": "Rosa Maria", 
        "type": "Person"
      }, 
      {
        "familyName": "Verdera", 
        "givenName": "Joan", 
        "type": "Person"
      }, 
      {
        "familyName": "Xamb\u00f3-Descamps", 
        "givenName": "Sebasti\u00e0", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8268-2_27", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9497-5", 
        "978-3-0348-8268-2"
      ], 
      "name": "European Congress of Mathematics", 
      "type": "Book"
    }, 
    "name": "Understanding Skyrmions Using Rational Maps", 
    "pagination": "469-479", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8268-2_27"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cb34c61bf1a2cc288407c3835fe22fcb28ddb38022b01e982804898eaa16407c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042659746"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8268-2_27", 
      "https://app.dimensions.ai/details/publication/pub.1042659746"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-8268-2_27"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8268-2_27'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8268-2_27'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8268-2_27'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8268-2_27'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8268-2_27 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N30c586f224a9475ab7f6b57674b02680
4 schema:citation https://doi.org/10.1016/0370-2693(90)90111-i
5 https://doi.org/10.1016/0375-9474(89)90161-9
6 https://doi.org/10.1016/s0550-3213(97)00619-6
7 https://doi.org/10.1103/physrevlett.79.363
8 https://doi.org/10.1103/physrevlett.86.3989
9 schema:datePublished 2001
10 schema:datePublishedReg 2001-01-01
11 schema:description We discuss an ansatz for Skyrme fields in three dimensions which uses rational maps between Riemann spheres, and produces shell-like structures of polyhedral form. Houghton, Manton and Sutcliffe showed that a single rational map gives good approximations to the minimal energy Skyrmions up to baryon number of order 10. We show how the method can be generalized by using two or more rational maps to give a double-shell or multi-shell structure. Particularly interesting examples occur at baryon numbers 12 and 14.
12 schema:editor Nd65b0bb63a98418894de2e6b73772ac1
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree true
16 schema:isPartOf N7a657d15805843b484b2a1d625aa2a01
17 schema:name Understanding Skyrmions Using Rational Maps
18 schema:pagination 469-479
19 schema:productId N32a48e03d50f4dd4ae99dccede6fdf13
20 N5c1721ea68d847ae99d8ec015eef0aa8
21 N8bca156b39ac45979e608f8957577615
22 schema:publisher Nec04899912294bbfad9e80f1cfd3c42e
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042659746
24 https://doi.org/10.1007/978-3-0348-8268-2_27
25 schema:sdDatePublished 2019-04-15T19:11
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nc75c48a63aaa40a68c6e77d20d02d867
28 schema:url http://link.springer.com/10.1007/978-3-0348-8268-2_27
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N30c586f224a9475ab7f6b57674b02680 rdf:first sg:person.01364115404.39
33 rdf:rest Nda118e6f29e4479cbb387d905242d7dd
34 N32a48e03d50f4dd4ae99dccede6fdf13 schema:name readcube_id
35 schema:value cb34c61bf1a2cc288407c3835fe22fcb28ddb38022b01e982804898eaa16407c
36 rdf:type schema:PropertyValue
37 N3dd6912119bf4db6bcb9fd5660a8ff18 schema:familyName Xambó-Descamps
38 schema:givenName Sebastià
39 rdf:type schema:Person
40 N505995dda06342b4a18d7b3a52f607b0 rdf:first Nbb093147d0d146d193051ee2ddf4d652
41 rdf:rest N9970ea3827ee4f2b99ef90d5bc047a78
42 N5a5027d7ba6e40329a2da96450d81ae5 schema:familyName Casacuberta
43 schema:givenName Carles
44 rdf:type schema:Person
45 N5c1721ea68d847ae99d8ec015eef0aa8 schema:name doi
46 schema:value 10.1007/978-3-0348-8268-2_27
47 rdf:type schema:PropertyValue
48 N5eaf3e68dbb845098129ede1d01ee281 schema:familyName Miró-Roig
49 schema:givenName Rosa Maria
50 rdf:type schema:Person
51 N7a657d15805843b484b2a1d625aa2a01 schema:isbn 978-3-0348-8268-2
52 978-3-0348-9497-5
53 schema:name European Congress of Mathematics
54 rdf:type schema:Book
55 N8bca156b39ac45979e608f8957577615 schema:name dimensions_id
56 schema:value pub.1042659746
57 rdf:type schema:PropertyValue
58 N90fc3dcf152a4ef58ec0651a797f8535 rdf:first N5eaf3e68dbb845098129ede1d01ee281
59 rdf:rest N505995dda06342b4a18d7b3a52f607b0
60 N9970ea3827ee4f2b99ef90d5bc047a78 rdf:first N3dd6912119bf4db6bcb9fd5660a8ff18
61 rdf:rest rdf:nil
62 Nbb093147d0d146d193051ee2ddf4d652 schema:familyName Verdera
63 schema:givenName Joan
64 rdf:type schema:Person
65 Nc75c48a63aaa40a68c6e77d20d02d867 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nd65b0bb63a98418894de2e6b73772ac1 rdf:first N5a5027d7ba6e40329a2da96450d81ae5
68 rdf:rest N90fc3dcf152a4ef58ec0651a797f8535
69 Nda118e6f29e4479cbb387d905242d7dd rdf:first sg:person.014121444104.73
70 rdf:rest rdf:nil
71 Nec04899912294bbfad9e80f1cfd3c42e schema:location Basel
72 schema:name Birkhäuser Basel
73 rdf:type schema:Organisation
74 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
75 schema:name Mathematical Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
78 schema:name Pure Mathematics
79 rdf:type schema:DefinedTerm
80 sg:person.01364115404.39 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
81 schema:familyName Manton
82 schema:givenName Nicholas S.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364115404.39
84 rdf:type schema:Person
85 sg:person.014121444104.73 schema:affiliation https://www.grid.ac/institutes/grid.8250.f
86 schema:familyName Piette
87 schema:givenName Bernard M. A. G.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014121444104.73
89 rdf:type schema:Person
90 https://doi.org/10.1016/0370-2693(90)90111-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1005800158
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0375-9474(89)90161-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053228541
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0550-3213(97)00619-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049288648
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.79.363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024993984
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.86.3989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039701592
99 rdf:type schema:CreativeWork
100 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
101 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, England
102 rdf:type schema:Organization
103 https://www.grid.ac/institutes/grid.8250.f schema:alternateName Durham University
104 schema:name Department of Mathematical Sciences, University of Durham, South Road, Durham, DH1 3LE, England
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...