On the Second Order Interpolation for Rational Vector Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2001

AUTHORS

V. Bolotnikov

ABSTRACT

All rational solutions of an interpolation problem for Hardy functions with prescribed first m Fourier coefficients of the autocorrelation function are described. Necessary and sufficient conditions for the existence and uniqueness of a solution are established.

PAGES

139-159

References to SciGraph publications

Book

TITLE

Operator Theory, System Theory and Related Topics

ISBN

978-3-0348-9491-3
978-3-0348-8247-7

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8247-7_6

DOI

http://dx.doi.org/10.1007/978-3-0348-8247-7_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007269993


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, 23187-8795, Williamburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "V.", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005189177", 
          "https://doi.org/10.1007/bf01195006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01195006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005189177", 
          "https://doi.org/10.1007/bf01195006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01262294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009192861", 
          "https://doi.org/10.1007/bf01262294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01262294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009192861", 
          "https://doi.org/10.1007/bf01262294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(88)90095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015886597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(88)90095-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015886597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(83)90103-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022585447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(83)90103-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022585447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033101609", 
          "https://doi.org/10.1007/bf01238220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01193458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034942924", 
          "https://doi.org/10.1007/bf01193458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01193458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034942924", 
          "https://doi.org/10.1007/bf01193458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043632982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tassp.1976.1162795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061518183"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001", 
    "datePublishedReg": "2001-01-01", 
    "description": "All rational solutions of an interpolation problem for Hardy functions with prescribed first m Fourier coefficients of the autocorrelation function are described. Necessary and sufficient conditions for the existence and uniqueness of a solution are established.", 
    "editor": [
      {
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Vinnikov", 
        "givenName": "Victor", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8247-7_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9491-3", 
        "978-3-0348-8247-7"
      ], 
      "name": "Operator Theory, System Theory and Related Topics", 
      "type": "Book"
    }, 
    "name": "On the Second Order Interpolation for Rational Vector Functions", 
    "pagination": "139-159", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007269993"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8247-7_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "22a10ebba57750f5401c73fda8eac71c7e5e5887a09e2e6cc44b28adfad802c5"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8247-7_6", 
      "https://app.dimensions.ai/details/publication/pub.1007269993"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8247-7_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8247-7_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8247-7_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8247-7_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8247-7_6'


 

This table displays all metadata directly associated to this object as RDF triples.

93 TRIPLES      22 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8247-7_6 schema:author N372073d5d75346888b5b6e36dc1c6855
2 schema:citation sg:pub.10.1007/978-3-0348-7709-1
3 sg:pub.10.1007/bf01193458
4 sg:pub.10.1007/bf01195006
5 sg:pub.10.1007/bf01238220
6 sg:pub.10.1007/bf01262294
7 https://app.dimensions.ai/details/publication/pub.1043632982
8 https://doi.org/10.1016/0005-1098(83)90103-6
9 https://doi.org/10.1016/0005-1098(88)90095-7
10 https://doi.org/10.1109/tassp.1976.1162795
11 schema:datePublished 2001
12 schema:datePublishedReg 2001-01-01
13 schema:description All rational solutions of an interpolation problem for Hardy functions with prescribed first m Fourier coefficients of the autocorrelation function are described. Necessary and sufficient conditions for the existence and uniqueness of a solution are established.
14 schema:editor Nfdeb315f5d7641aa9c522c41d1c3b2c4
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nbb3181e6f82343b8b881678e2a42670d
19 schema:name On the Second Order Interpolation for Rational Vector Functions
20 schema:pagination 139-159
21 schema:productId Nb21a3f817f5b4353b743382de4d454b1
22 Nb928ab3d98794feeb7eec18630ab40c9
23 Nc8f84ae43be246d2affafd910490366f
24 schema:publisher N3580d028879b432986d3a25607ad2812
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007269993
26 https://doi.org/10.1007/978-3-0348-8247-7_6
27 schema:sdDatePublished 2019-04-16T09:06
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N4cd43c8889e049cea4e4fd4a98339cec
30 schema:url https://link.springer.com/10.1007%2F978-3-0348-8247-7_6
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N063646f06e9245be86e9eaeaf8e8e85c rdf:first N09a0a5e992044843bfea31376a4340dc
35 rdf:rest rdf:nil
36 N09a0a5e992044843bfea31376a4340dc schema:familyName Vinnikov
37 schema:givenName Victor
38 rdf:type schema:Person
39 N3580d028879b432986d3a25607ad2812 schema:location Basel
40 schema:name Birkhäuser Basel
41 rdf:type schema:Organisation
42 N372073d5d75346888b5b6e36dc1c6855 rdf:first sg:person.01130533744.43
43 rdf:rest rdf:nil
44 N4cd43c8889e049cea4e4fd4a98339cec schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N8772249426784df39fcfff8526dd6558 schema:familyName Alpay
47 schema:givenName Daniel
48 rdf:type schema:Person
49 Nb21a3f817f5b4353b743382de4d454b1 schema:name readcube_id
50 schema:value 22a10ebba57750f5401c73fda8eac71c7e5e5887a09e2e6cc44b28adfad802c5
51 rdf:type schema:PropertyValue
52 Nb928ab3d98794feeb7eec18630ab40c9 schema:name doi
53 schema:value 10.1007/978-3-0348-8247-7_6
54 rdf:type schema:PropertyValue
55 Nbb3181e6f82343b8b881678e2a42670d schema:isbn 978-3-0348-8247-7
56 978-3-0348-9491-3
57 schema:name Operator Theory, System Theory and Related Topics
58 rdf:type schema:Book
59 Nc8f84ae43be246d2affafd910490366f schema:name dimensions_id
60 schema:value pub.1007269993
61 rdf:type schema:PropertyValue
62 Nfdeb315f5d7641aa9c522c41d1c3b2c4 rdf:first N8772249426784df39fcfff8526dd6558
63 rdf:rest N063646f06e9245be86e9eaeaf8e8e85c
64 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
65 schema:familyName Bolotnikov
66 schema:givenName V.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
68 rdf:type schema:Person
69 sg:pub.10.1007/978-3-0348-7709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632982
70 https://doi.org/10.1007/978-3-0348-7709-1
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01193458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034942924
73 https://doi.org/10.1007/bf01193458
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01195006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005189177
76 https://doi.org/10.1007/bf01195006
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01238220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033101609
79 https://doi.org/10.1007/bf01238220
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/bf01262294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009192861
82 https://doi.org/10.1007/bf01262294
83 rdf:type schema:CreativeWork
84 https://app.dimensions.ai/details/publication/pub.1043632982 schema:CreativeWork
85 https://doi.org/10.1016/0005-1098(83)90103-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022585447
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0005-1098(88)90095-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015886597
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1109/tassp.1976.1162795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061518183
90 rdf:type schema:CreativeWork
91 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
92 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamburg, VA, USA
93 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...