Singular Point-like Perturbations of the Laguerre Operator in a Pontryagin Space View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Aad Dijksma , Yuri Shondin

ABSTRACT

The spectral problem for the Laguerre equation on (0, ∞) with real parameter a in the case 0 <|α|< 1 is closely related to the Nevanlinna \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{Q}_{\alpha }}(z) = - \pi \Gamma ( - z)/(\sin \pi \alpha )\Gamma ( - z - \alpha ). $$\end{document} function If |α| and |α|≠ 2, 3,… this function belongs to the generalized Nevanlinna class Nm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m = [\tfrac{{|\alpha | + 1}} {2}]. $$\end{document} A natural question appears: to what spectral problem does this function correspond? For α< -1, α ≠-2, -3,…, an answer was given by Derkach [D]. He obtained an operator representation for the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m_\alpha }(z) = - {Q_\alpha }( - Z)/{\mathcal{T}^2}(1 + \alpha ) $$\end{document} in terms of a self-adjoint operator in a Pontryagin space and an interpretation of mα,(z) as the Titchmarsh-Weyl function of some boundary value problem related to the Laguerre equation. That an indefinite metric was needed was made clear earlier by Morton and Krall [MK]. In this note for α> 1, α ≠ 2, 3,… we answer this and related questions by using Pontryagin space operator realizations of suitable singular point-like perturbations of the Laguerre operator. We describe the operator models for Qa(z) and compare them with the models for -a. Also we discuss the spectral properties of the self-adjoint linear relations in the representation of the functions Qa(z) and -Qa(z)-1 Finally, we describe the connection between the self-adjoint linear relations in the representations of Qa(z) and Q-α (z +α) and show that this connection can be viewed as an operator implementation of the Kummer transform for confluent hypergeometric functions. More... »

PAGES

141-181

Book

TITLE

Operator Methods in Ordinary and Partial Differential Equations

ISBN

978-3-0348-9479-1
978-3-0348-8219-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13

DOI

http://dx.doi.org/10.1007/978-3-0348-8219-4_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020008176


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P. O. Box 800, 9700, Groningen, AV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Pedagogical State University, str. Ulyanova 1, 603600, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jdeq.1999.3755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017336779", 
          "https://doi.org/10.1007/bf01238863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19831140116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017905796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022022758", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88201-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022022758", 
          "https://doi.org/10.1007/978-3-642-88201-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88201-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022022758", 
          "https://doi.org/10.1007/978-3-642-88201-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023629099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(82)90009-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023885200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01320702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024186821", 
          "https://doi.org/10.1007/bf01320702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(79)90090-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026702666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028982361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01016615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039082334", 
          "https://doi.org/10.1007/bf01016615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01016615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039082334", 
          "https://doi.org/10.1007/bf01016615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500009914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054892753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1664820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057742874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.522710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058099730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.527339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058104358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.529404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058106419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0509042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072366155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567794"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "The spectral problem for the Laguerre equation on (0, \u221e) with real parameter a in the case 0 <|\u03b1|< 1 is closely related to the Nevanlinna \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{Q}_{\\alpha }}(z) = - \\pi \\Gamma ( - z)/(\\sin \\pi \\alpha )\\Gamma ( - z - \\alpha ). $$\\end{document} function If |\u03b1| and |\u03b1|\u2260 2, 3,\u2026 this function belongs to the generalized Nevanlinna class Nm, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ m = [\\tfrac{{|\\alpha | + 1}} {2}]. $$\\end{document} A natural question appears: to what spectral problem does this function correspond? For \u03b1< -1, \u03b1 \u2260-2, -3,\u2026, an answer was given by Derkach [D]. He obtained an operator representation for the function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m_\\alpha }(z) = - {Q_\\alpha }( - Z)/{\\mathcal{T}^2}(1 + \\alpha ) $$\\end{document} in terms of a self-adjoint operator in a Pontryagin space and an interpretation of m\u03b1,(z) as the Titchmarsh-Weyl function of some boundary value problem related to the Laguerre equation. That an indefinite metric was needed was made clear earlier by Morton and Krall [MK]. In this note for \u03b1> 1, \u03b1 \u2260 2, 3,\u2026 we answer this and related questions by using Pontryagin space operator realizations of suitable singular point-like perturbations of the Laguerre operator. We describe the operator models for Qa(z) and compare them with the models for -a. Also we discuss the spectral properties of the self-adjoint linear relations in the representation of the functions Qa(z) and -Qa(z)-1 Finally, we describe the connection between the self-adjoint linear relations in the representations of Qa(z) and Q-\u03b1 (z +\u03b1) and show that this connection can be viewed as an operator implementation of the Kummer transform for confluent hypergeometric functions.", 
    "editor": [
      {
        "familyName": "Albeverio", 
        "givenName": "Sergio", 
        "type": "Person"
      }, 
      {
        "familyName": "Elander", 
        "givenName": "Nils", 
        "type": "Person"
      }, 
      {
        "familyName": "Everitt", 
        "givenName": "W. Norrie", 
        "type": "Person"
      }, 
      {
        "familyName": "Kurasov", 
        "givenName": "Pavel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8219-4_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9479-1", 
        "978-3-0348-8219-4"
      ], 
      "name": "Operator Methods in Ordinary and Partial Differential Equations", 
      "type": "Book"
    }, 
    "name": "Singular Point-like Perturbations of the Laguerre Operator in a Pontryagin Space", 
    "pagination": "141-181", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020008176"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8219-4_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f54efbbe1e373c4f21646163421514b68f9ff7647a52f90b50f419c1403aa88"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8219-4_13", 
      "https://app.dimensions.ai/details/publication/pub.1020008176"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8219-4_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8219-4_13 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N093202828cfe4a09952893e5112454f2
4 schema:citation sg:pub.10.1007/978-3-642-88201-2
5 sg:pub.10.1007/bf01016615
6 sg:pub.10.1007/bf01238863
7 sg:pub.10.1007/bf01320702
8 https://app.dimensions.ai/details/publication/pub.1022022758
9 https://doi.org/10.1002/mana.19770770116
10 https://doi.org/10.1002/mana.19831140116
11 https://doi.org/10.1006/jdeq.1999.3755
12 https://doi.org/10.1006/jfan.1995.1030
13 https://doi.org/10.1006/jfan.1995.1074
14 https://doi.org/10.1016/0022-247x(79)90090-8
15 https://doi.org/10.1016/0022-247x(82)90009-9
16 https://doi.org/10.1017/s0308210500009914
17 https://doi.org/10.1063/1.1664820
18 https://doi.org/10.1063/1.522710
19 https://doi.org/10.1063/1.527339
20 https://doi.org/10.1063/1.529404
21 https://doi.org/10.1090/mmono/017
22 https://doi.org/10.1137/0509042
23 https://doi.org/10.4213/mzm1311
24 schema:datePublished 2002
25 schema:datePublishedReg 2002-01-01
26 schema:description The spectral problem for the Laguerre equation on (0, ∞) with real parameter a in the case 0 <|α|< 1 is closely related to the Nevanlinna \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{Q}_{\alpha }}(z) = - \pi \Gamma ( - z)/(\sin \pi \alpha )\Gamma ( - z - \alpha ). $$\end{document} function If |α| and |α|≠ 2, 3,… this function belongs to the generalized Nevanlinna class Nm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m = [\tfrac{{|\alpha | + 1}} {2}]. $$\end{document} A natural question appears: to what spectral problem does this function correspond? For α< -1, α ≠-2, -3,…, an answer was given by Derkach [D]. He obtained an operator representation for the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m_\alpha }(z) = - {Q_\alpha }( - Z)/{\mathcal{T}^2}(1 + \alpha ) $$\end{document} in terms of a self-adjoint operator in a Pontryagin space and an interpretation of mα,(z) as the Titchmarsh-Weyl function of some boundary value problem related to the Laguerre equation. That an indefinite metric was needed was made clear earlier by Morton and Krall [MK]. In this note for α> 1, α ≠ 2, 3,… we answer this and related questions by using Pontryagin space operator realizations of suitable singular point-like perturbations of the Laguerre operator. We describe the operator models for Qa(z) and compare them with the models for -a. Also we discuss the spectral properties of the self-adjoint linear relations in the representation of the functions Qa(z) and -Qa(z)-1 Finally, we describe the connection between the self-adjoint linear relations in the representations of Qa(z) and Q-α (z +α) and show that this connection can be viewed as an operator implementation of the Kummer transform for confluent hypergeometric functions.
27 schema:editor Ne681888698a240719e9da9123415da56
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N14c29122d2e84fcc817bee44b782e447
32 schema:name Singular Point-like Perturbations of the Laguerre Operator in a Pontryagin Space
33 schema:pagination 141-181
34 schema:productId N0f41b720822241dc9b6dd4e6fe87e816
35 N6910b4a21fa64a9f93746023521a8b71
36 N8a82b94ff9dd4e378f22102e06b75e1f
37 schema:publisher N2ff50668013b4b7fb232456b192485f1
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020008176
39 https://doi.org/10.1007/978-3-0348-8219-4_13
40 schema:sdDatePublished 2019-04-16T09:05
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Nf7ca61b379e3498c919d62ac522e6803
43 schema:url https://link.springer.com/10.1007%2F978-3-0348-8219-4_13
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N093202828cfe4a09952893e5112454f2 rdf:first sg:person.013762723211.39
48 rdf:rest N54a299bd9f7841e9bbe8ee869169ae50
49 N09bef3e4a1ec4575a76ff48f8d534cb5 schema:name Department of Physics, Pedagogical State University, str. Ulyanova 1, 603600, Nizhny Novgorod, Russia
50 rdf:type schema:Organization
51 N0f41b720822241dc9b6dd4e6fe87e816 schema:name doi
52 schema:value 10.1007/978-3-0348-8219-4_13
53 rdf:type schema:PropertyValue
54 N14c29122d2e84fcc817bee44b782e447 schema:isbn 978-3-0348-8219-4
55 978-3-0348-9479-1
56 schema:name Operator Methods in Ordinary and Partial Differential Equations
57 rdf:type schema:Book
58 N1cd10aa810e644a7bcea495bb22ffe4d rdf:first Neecf15a5f18c40e9913dbce566758718
59 rdf:rest Nc56dff3fac214630a148ebc84bbc34c5
60 N2ff50668013b4b7fb232456b192485f1 schema:location Basel
61 schema:name Birkhäuser Basel
62 rdf:type schema:Organisation
63 N54a299bd9f7841e9bbe8ee869169ae50 rdf:first sg:person.015771172577.94
64 rdf:rest rdf:nil
65 N650242e972104df6a8afd6bfd98ed483 schema:familyName Albeverio
66 schema:givenName Sergio
67 rdf:type schema:Person
68 N6910b4a21fa64a9f93746023521a8b71 schema:name dimensions_id
69 schema:value pub.1020008176
70 rdf:type schema:PropertyValue
71 N78096ec2588449079ec0816f8cb0bcbc rdf:first Ne291c387cb2b4d868d48dffc114bd6db
72 rdf:rest rdf:nil
73 N8a82b94ff9dd4e378f22102e06b75e1f schema:name readcube_id
74 schema:value 5f54efbbe1e373c4f21646163421514b68f9ff7647a52f90b50f419c1403aa88
75 rdf:type schema:PropertyValue
76 Nb917e1106d6041a6a79988594f57d450 schema:familyName Everitt
77 schema:givenName W. Norrie
78 rdf:type schema:Person
79 Nc56dff3fac214630a148ebc84bbc34c5 rdf:first Nb917e1106d6041a6a79988594f57d450
80 rdf:rest N78096ec2588449079ec0816f8cb0bcbc
81 Ne291c387cb2b4d868d48dffc114bd6db schema:familyName Kurasov
82 schema:givenName Pavel
83 rdf:type schema:Person
84 Ne681888698a240719e9da9123415da56 rdf:first N650242e972104df6a8afd6bfd98ed483
85 rdf:rest N1cd10aa810e644a7bcea495bb22ffe4d
86 Neecf15a5f18c40e9913dbce566758718 schema:familyName Elander
87 schema:givenName Nils
88 rdf:type schema:Person
89 Nf7ca61b379e3498c919d62ac522e6803 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
95 schema:name Pure Mathematics
96 rdf:type schema:DefinedTerm
97 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
98 schema:familyName Dijksma
99 schema:givenName Aad
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
101 rdf:type schema:Person
102 sg:person.015771172577.94 schema:affiliation N09bef3e4a1ec4575a76ff48f8d534cb5
103 schema:familyName Shondin
104 schema:givenName Yuri
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
106 rdf:type schema:Person
107 sg:pub.10.1007/978-3-642-88201-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022022758
108 https://doi.org/10.1007/978-3-642-88201-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01016615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039082334
111 https://doi.org/10.1007/bf01016615
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01238863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017336779
114 https://doi.org/10.1007/bf01238863
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01320702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024186821
117 https://doi.org/10.1007/bf01320702
118 rdf:type schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1022022758 schema:CreativeWork
120 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/mana.19831140116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017905796
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1006/jdeq.1999.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159253
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1006/jfan.1995.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028982361
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1006/jfan.1995.1074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023629099
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0022-247x(79)90090-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026702666
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0022-247x(82)90009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023885200
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1017/s0308210500009914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054892753
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.1664820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742874
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.522710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099730
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.527339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104358
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.529404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058106419
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1090/mmono/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567794
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/0509042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847048
147 rdf:type schema:CreativeWork
148 https://doi.org/10.4213/mzm1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072366155
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
151 schema:name Department of Mathematics, University of Groningen, P. O. Box 800, 9700, Groningen, AV, The Netherlands
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...