Ontology type: schema:Chapter
2002
AUTHORS ABSTRACTThe spectral problem for the Laguerre equation on (0, ∞) with real parameter a in the case 0 <|α|< 1 is closely related to the Nevanlinna \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{Q}_{\alpha }}(z) = - \pi \Gamma ( - z)/(\sin \pi \alpha )\Gamma ( - z - \alpha ). $$\end{document} function If |α| and |α|≠ 2, 3,… this function belongs to the generalized Nevanlinna class Nm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m = [\tfrac{{|\alpha | + 1}} {2}]. $$\end{document} A natural question appears: to what spectral problem does this function correspond? For α< -1, α ≠-2, -3,…, an answer was given by Derkach [D]. He obtained an operator representation for the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m_\alpha }(z) = - {Q_\alpha }( - Z)/{\mathcal{T}^2}(1 + \alpha ) $$\end{document} in terms of a self-adjoint operator in a Pontryagin space and an interpretation of mα,(z) as the Titchmarsh-Weyl function of some boundary value problem related to the Laguerre equation. That an indefinite metric was needed was made clear earlier by Morton and Krall [MK]. In this note for α> 1, α ≠ 2, 3,… we answer this and related questions by using Pontryagin space operator realizations of suitable singular point-like perturbations of the Laguerre operator. We describe the operator models for Qa(z) and compare them with the models for -a. Also we discuss the spectral properties of the self-adjoint linear relations in the representation of the functions Qa(z) and -Qa(z)-1 Finally, we describe the connection between the self-adjoint linear relations in the representations of Qa(z) and Q-α (z +α) and show that this connection can be viewed as an operator implementation of the Kummer transform for confluent hypergeometric functions. More... »
PAGES141-181
Operator Methods in Ordinary and Partial Differential Equations
ISBN
978-3-0348-9479-1
978-3-0348-8219-4
http://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13
DOIhttp://dx.doi.org/10.1007/978-3-0348-8219-4_13
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1020008176
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P. O. Box 800, 9700, Groningen, AV, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "Aad",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Physics, Pedagogical State University, str. Ulyanova 1, 603600, Nizhny Novgorod, Russia"
],
"type": "Organization"
},
"familyName": "Shondin",
"givenName": "Yuri",
"id": "sg:person.015771172577.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1006/jdeq.1999.3755",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002159253"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01238863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017336779",
"https://doi.org/10.1007/bf01238863"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mana.19831140116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017905796"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1022022758",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-88201-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022022758",
"https://doi.org/10.1007/978-3-642-88201-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-88201-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022022758",
"https://doi.org/10.1007/978-3-642-88201-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jfan.1995.1074",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023629099"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-247x(82)90009-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023885200"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01320702",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024186821",
"https://doi.org/10.1007/bf01320702"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-247x(79)90090-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026702666"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mana.19770770116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027367955"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jfan.1995.1030",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028982361"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01016615",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039082334",
"https://doi.org/10.1007/bf01016615"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01016615",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039082334",
"https://doi.org/10.1007/bf01016615"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0308210500009914",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054892753"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.1664820",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1057742874"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.522710",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058099730"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.527339",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058104358"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.529404",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058106419"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/0509042",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062847048"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4213/mzm1311",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072366155"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1090/mmono/017",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101567794"
],
"type": "CreativeWork"
}
],
"datePublished": "2002",
"datePublishedReg": "2002-01-01",
"description": "The spectral problem for the Laguerre equation on (0, \u221e) with real parameter a in the case 0 <|\u03b1|< 1 is closely related to the Nevanlinna \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{Q}_{\\alpha }}(z) = - \\pi \\Gamma ( - z)/(\\sin \\pi \\alpha )\\Gamma ( - z - \\alpha ). $$\\end{document} function If |\u03b1| and |\u03b1|\u2260 2, 3,\u2026 this function belongs to the generalized Nevanlinna class Nm, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ m = [\\tfrac{{|\\alpha | + 1}} {2}]. $$\\end{document} A natural question appears: to what spectral problem does this function correspond? For \u03b1< -1, \u03b1 \u2260-2, -3,\u2026, an answer was given by Derkach [D]. He obtained an operator representation for the function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m_\\alpha }(z) = - {Q_\\alpha }( - Z)/{\\mathcal{T}^2}(1 + \\alpha ) $$\\end{document} in terms of a self-adjoint operator in a Pontryagin space and an interpretation of m\u03b1,(z) as the Titchmarsh-Weyl function of some boundary value problem related to the Laguerre equation. That an indefinite metric was needed was made clear earlier by Morton and Krall [MK]. In this note for \u03b1> 1, \u03b1 \u2260 2, 3,\u2026 we answer this and related questions by using Pontryagin space operator realizations of suitable singular point-like perturbations of the Laguerre operator. We describe the operator models for Qa(z) and compare them with the models for -a. Also we discuss the spectral properties of the self-adjoint linear relations in the representation of the functions Qa(z) and -Qa(z)-1 Finally, we describe the connection between the self-adjoint linear relations in the representations of Qa(z) and Q-\u03b1 (z +\u03b1) and show that this connection can be viewed as an operator implementation of the Kummer transform for confluent hypergeometric functions.",
"editor": [
{
"familyName": "Albeverio",
"givenName": "Sergio",
"type": "Person"
},
{
"familyName": "Elander",
"givenName": "Nils",
"type": "Person"
},
{
"familyName": "Everitt",
"givenName": "W. Norrie",
"type": "Person"
},
{
"familyName": "Kurasov",
"givenName": "Pavel",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-0348-8219-4_13",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-0348-9479-1",
"978-3-0348-8219-4"
],
"name": "Operator Methods in Ordinary and Partial Differential Equations",
"type": "Book"
},
"name": "Singular Point-like Perturbations of the Laguerre Operator in a Pontryagin Space",
"pagination": "141-181",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1020008176"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-0348-8219-4_13"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"5f54efbbe1e373c4f21646163421514b68f9ff7647a52f90b50f419c1403aa88"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user Basel",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-0348-8219-4_13",
"https://app.dimensions.ai/details/publication/pub.1020008176"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T09:05",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000001.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-0348-8219-4_13"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'
This table displays all metadata directly associated to this object as RDF triples.
152 TRIPLES
23 PREDICATES
47 URIs
20 LITERALS
8 BLANK NODES