Singular Point-like Perturbations of the Laguerre Operator in a Pontryagin Space View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Aad Dijksma , Yuri Shondin

ABSTRACT

The spectral problem for the Laguerre equation on (0, ∞) with real parameter a in the case 0 <|α|< 1 is closely related to the Nevanlinna \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{Q}_{\alpha }}(z) = - \pi \Gamma ( - z)/(\sin \pi \alpha )\Gamma ( - z - \alpha ). $$\end{document} function If |α| and |α|≠ 2, 3,… this function belongs to the generalized Nevanlinna class Nm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m = [\tfrac{{|\alpha | + 1}} {2}]. $$\end{document} A natural question appears: to what spectral problem does this function correspond? For α< -1, α ≠-2, -3,…, an answer was given by Derkach [D]. He obtained an operator representation for the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m_\alpha }(z) = - {Q_\alpha }( - Z)/{\mathcal{T}^2}(1 + \alpha ) $$\end{document} in terms of a self-adjoint operator in a Pontryagin space and an interpretation of mα,(z) as the Titchmarsh-Weyl function of some boundary value problem related to the Laguerre equation. That an indefinite metric was needed was made clear earlier by Morton and Krall [MK]. In this note for α> 1, α ≠ 2, 3,… we answer this and related questions by using Pontryagin space operator realizations of suitable singular point-like perturbations of the Laguerre operator. We describe the operator models for Qa(z) and compare them with the models for -a. Also we discuss the spectral properties of the self-adjoint linear relations in the representation of the functions Qa(z) and -Qa(z)-1 Finally, we describe the connection between the self-adjoint linear relations in the representations of Qa(z) and Q-α (z +α) and show that this connection can be viewed as an operator implementation of the Kummer transform for confluent hypergeometric functions. More... »

PAGES

141-181

References to SciGraph publications

Book

TITLE

Operator Methods in Ordinary and Partial Differential Equations

ISBN

978-3-0348-9479-1
978-3-0348-8219-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13

DOI

http://dx.doi.org/10.1007/978-3-0348-8219-4_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020008176


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P. O. Box 800, 9700, Groningen, AV, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Pedagogical State University, str. Ulyanova 1, 603600, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1006/jdeq.1999.3755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017336779", 
          "https://doi.org/10.1007/bf01238863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19831140116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017905796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1022022758", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88201-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022022758", 
          "https://doi.org/10.1007/978-3-642-88201-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-88201-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022022758", 
          "https://doi.org/10.1007/978-3-642-88201-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023629099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(82)90009-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023885200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01320702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024186821", 
          "https://doi.org/10.1007/bf01320702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(79)90090-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026702666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1995.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028982361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01016615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039082334", 
          "https://doi.org/10.1007/bf01016615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01016615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039082334", 
          "https://doi.org/10.1007/bf01016615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0308210500009914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054892753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1664820", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057742874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.522710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058099730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.527339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058104358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.529404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058106419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0509042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062847048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm1311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072366155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/mmono/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101567794"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "The spectral problem for the Laguerre equation on (0, \u221e) with real parameter a in the case 0 <|\u03b1|< 1 is closely related to the Nevanlinna \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${{Q}_{\\alpha }}(z) = - \\pi \\Gamma ( - z)/(\\sin \\pi \\alpha )\\Gamma ( - z - \\alpha ). $$\\end{document} function If |\u03b1| and |\u03b1|\u2260 2, 3,\u2026 this function belongs to the generalized Nevanlinna class Nm, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ m = [\\tfrac{{|\\alpha | + 1}} {2}]. $$\\end{document} A natural question appears: to what spectral problem does this function correspond? For \u03b1< -1, \u03b1 \u2260-2, -3,\u2026, an answer was given by Derkach [D]. He obtained an operator representation for the function \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ {m_\\alpha }(z) = - {Q_\\alpha }( - Z)/{\\mathcal{T}^2}(1 + \\alpha ) $$\\end{document} in terms of a self-adjoint operator in a Pontryagin space and an interpretation of m\u03b1,(z) as the Titchmarsh-Weyl function of some boundary value problem related to the Laguerre equation. That an indefinite metric was needed was made clear earlier by Morton and Krall [MK]. In this note for \u03b1> 1, \u03b1 \u2260 2, 3,\u2026 we answer this and related questions by using Pontryagin space operator realizations of suitable singular point-like perturbations of the Laguerre operator. We describe the operator models for Qa(z) and compare them with the models for -a. Also we discuss the spectral properties of the self-adjoint linear relations in the representation of the functions Qa(z) and -Qa(z)-1 Finally, we describe the connection between the self-adjoint linear relations in the representations of Qa(z) and Q-\u03b1 (z +\u03b1) and show that this connection can be viewed as an operator implementation of the Kummer transform for confluent hypergeometric functions.", 
    "editor": [
      {
        "familyName": "Albeverio", 
        "givenName": "Sergio", 
        "type": "Person"
      }, 
      {
        "familyName": "Elander", 
        "givenName": "Nils", 
        "type": "Person"
      }, 
      {
        "familyName": "Everitt", 
        "givenName": "W. Norrie", 
        "type": "Person"
      }, 
      {
        "familyName": "Kurasov", 
        "givenName": "Pavel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8219-4_13", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9479-1", 
        "978-3-0348-8219-4"
      ], 
      "name": "Operator Methods in Ordinary and Partial Differential Equations", 
      "type": "Book"
    }, 
    "name": "Singular Point-like Perturbations of the Laguerre Operator in a Pontryagin Space", 
    "pagination": "141-181", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020008176"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8219-4_13"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f54efbbe1e373c4f21646163421514b68f9ff7647a52f90b50f419c1403aa88"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8219-4_13", 
      "https://app.dimensions.ai/details/publication/pub.1020008176"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46765_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8219-4_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8219-4_13'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      47 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8219-4_13 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nff283231d6424e2f949eec7a7026df71
4 schema:citation sg:pub.10.1007/978-3-642-88201-2
5 sg:pub.10.1007/bf01016615
6 sg:pub.10.1007/bf01238863
7 sg:pub.10.1007/bf01320702
8 https://app.dimensions.ai/details/publication/pub.1022022758
9 https://doi.org/10.1002/mana.19770770116
10 https://doi.org/10.1002/mana.19831140116
11 https://doi.org/10.1006/jdeq.1999.3755
12 https://doi.org/10.1006/jfan.1995.1030
13 https://doi.org/10.1006/jfan.1995.1074
14 https://doi.org/10.1016/0022-247x(79)90090-8
15 https://doi.org/10.1016/0022-247x(82)90009-9
16 https://doi.org/10.1017/s0308210500009914
17 https://doi.org/10.1063/1.1664820
18 https://doi.org/10.1063/1.522710
19 https://doi.org/10.1063/1.527339
20 https://doi.org/10.1063/1.529404
21 https://doi.org/10.1090/mmono/017
22 https://doi.org/10.1137/0509042
23 https://doi.org/10.4213/mzm1311
24 schema:datePublished 2002
25 schema:datePublishedReg 2002-01-01
26 schema:description The spectral problem for the Laguerre equation on (0, ∞) with real parameter a in the case 0 <|α|< 1 is closely related to the Nevanlinna \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{Q}_{\alpha }}(z) = - \pi \Gamma ( - z)/(\sin \pi \alpha )\Gamma ( - z - \alpha ). $$\end{document} function If |α| and |α|≠ 2, 3,… this function belongs to the generalized Nevanlinna class Nm, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m = [\tfrac{{|\alpha | + 1}} {2}]. $$\end{document} A natural question appears: to what spectral problem does this function correspond? For α< -1, α ≠-2, -3,…, an answer was given by Derkach [D]. He obtained an operator representation for the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {m_\alpha }(z) = - {Q_\alpha }( - Z)/{\mathcal{T}^2}(1 + \alpha ) $$\end{document} in terms of a self-adjoint operator in a Pontryagin space and an interpretation of mα,(z) as the Titchmarsh-Weyl function of some boundary value problem related to the Laguerre equation. That an indefinite metric was needed was made clear earlier by Morton and Krall [MK]. In this note for α> 1, α ≠ 2, 3,… we answer this and related questions by using Pontryagin space operator realizations of suitable singular point-like perturbations of the Laguerre operator. We describe the operator models for Qa(z) and compare them with the models for -a. Also we discuss the spectral properties of the self-adjoint linear relations in the representation of the functions Qa(z) and -Qa(z)-1 Finally, we describe the connection between the self-adjoint linear relations in the representations of Qa(z) and Q-α (z +α) and show that this connection can be viewed as an operator implementation of the Kummer transform for confluent hypergeometric functions.
27 schema:editor Nd6a308179003462498f4e68360a14080
28 schema:genre chapter
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N80c7f29555c0439faeeb6ad2b94a916a
32 schema:name Singular Point-like Perturbations of the Laguerre Operator in a Pontryagin Space
33 schema:pagination 141-181
34 schema:productId N0eafa95c2583449c9c53e1a437c2d9e4
35 N8a55372fb07b48d996b839730ff37f34
36 N9fa1c5e3276e49edaa3f39ef3bfab0ff
37 schema:publisher N1e6ab9ec7f6c474c9fdf72ac8a06f4cd
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020008176
39 https://doi.org/10.1007/978-3-0348-8219-4_13
40 schema:sdDatePublished 2019-04-16T09:05
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher Ne71807df2c40448d83ac0941381cb19c
43 schema:url https://link.springer.com/10.1007%2F978-3-0348-8219-4_13
44 sgo:license sg:explorer/license/
45 sgo:sdDataset chapters
46 rdf:type schema:Chapter
47 N0eafa95c2583449c9c53e1a437c2d9e4 schema:name doi
48 schema:value 10.1007/978-3-0348-8219-4_13
49 rdf:type schema:PropertyValue
50 N1e6ab9ec7f6c474c9fdf72ac8a06f4cd schema:location Basel
51 schema:name Birkhäuser Basel
52 rdf:type schema:Organisation
53 N3f82b7de2c914dbda5693bde6cb1b16e rdf:first sg:person.015771172577.94
54 rdf:rest rdf:nil
55 N48b4bfce43f54a26a490e51751b3f0c2 rdf:first Nfb22080140274aaeb61174b53f0391c4
56 rdf:rest Ndbdd67c371d84f9faedbc1662d653ea9
57 N519de93a4a304546a9073264815781a7 schema:name Department of Physics, Pedagogical State University, str. Ulyanova 1, 603600, Nizhny Novgorod, Russia
58 rdf:type schema:Organization
59 N80c7f29555c0439faeeb6ad2b94a916a schema:isbn 978-3-0348-8219-4
60 978-3-0348-9479-1
61 schema:name Operator Methods in Ordinary and Partial Differential Equations
62 rdf:type schema:Book
63 N8a55372fb07b48d996b839730ff37f34 schema:name dimensions_id
64 schema:value pub.1020008176
65 rdf:type schema:PropertyValue
66 N9fa1c5e3276e49edaa3f39ef3bfab0ff schema:name readcube_id
67 schema:value 5f54efbbe1e373c4f21646163421514b68f9ff7647a52f90b50f419c1403aa88
68 rdf:type schema:PropertyValue
69 Na6eaf934af414338ba2f1b97d8f1dac1 rdf:first Nca4dcd7f49c941c8bb726976c5770e7d
70 rdf:rest rdf:nil
71 Nae4db309170e416b821ef9e372a380ff schema:familyName Everitt
72 schema:givenName W. Norrie
73 rdf:type schema:Person
74 Nb089a1fc127247159c9bbbd066406c50 schema:familyName Albeverio
75 schema:givenName Sergio
76 rdf:type schema:Person
77 Nca4dcd7f49c941c8bb726976c5770e7d schema:familyName Kurasov
78 schema:givenName Pavel
79 rdf:type schema:Person
80 Nd6a308179003462498f4e68360a14080 rdf:first Nb089a1fc127247159c9bbbd066406c50
81 rdf:rest N48b4bfce43f54a26a490e51751b3f0c2
82 Ndbdd67c371d84f9faedbc1662d653ea9 rdf:first Nae4db309170e416b821ef9e372a380ff
83 rdf:rest Na6eaf934af414338ba2f1b97d8f1dac1
84 Ne71807df2c40448d83ac0941381cb19c schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nfb22080140274aaeb61174b53f0391c4 schema:familyName Elander
87 schema:givenName Nils
88 rdf:type schema:Person
89 Nff283231d6424e2f949eec7a7026df71 rdf:first sg:person.013762723211.39
90 rdf:rest N3f82b7de2c914dbda5693bde6cb1b16e
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
95 schema:name Pure Mathematics
96 rdf:type schema:DefinedTerm
97 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
98 schema:familyName Dijksma
99 schema:givenName Aad
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
101 rdf:type schema:Person
102 sg:person.015771172577.94 schema:affiliation N519de93a4a304546a9073264815781a7
103 schema:familyName Shondin
104 schema:givenName Yuri
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
106 rdf:type schema:Person
107 sg:pub.10.1007/978-3-642-88201-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022022758
108 https://doi.org/10.1007/978-3-642-88201-2
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf01016615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039082334
111 https://doi.org/10.1007/bf01016615
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01238863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017336779
114 https://doi.org/10.1007/bf01238863
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf01320702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024186821
117 https://doi.org/10.1007/bf01320702
118 rdf:type schema:CreativeWork
119 https://app.dimensions.ai/details/publication/pub.1022022758 schema:CreativeWork
120 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/mana.19831140116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017905796
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1006/jdeq.1999.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159253
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1006/jfan.1995.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028982361
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1006/jfan.1995.1074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023629099
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0022-247x(79)90090-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026702666
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0022-247x(82)90009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023885200
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1017/s0308210500009914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054892753
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.1664820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742874
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.522710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058099730
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.527339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058104358
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.529404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058106419
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1090/mmono/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101567794
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/0509042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062847048
147 rdf:type schema:CreativeWork
148 https://doi.org/10.4213/mzm1311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072366155
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
151 schema:name Department of Mathematics, University of Groningen, P. O. Box 800, 9700, Groningen, AV, The Netherlands
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...