Ontology type: schema:Chapter
2003
AUTHORSD. Alpay , T. Ya. Azizov , A. Dijksma , H. Langer , G. Wanjala
ABSTRACTThe basic interpolation problem for Schur functions is: Find all Schur functions s(z)for which s (0) has a given value. In this paper we consider the same basic interpolation problem but now for the class of generalized Schur functions with finitely many negative squares which are holomorphic at z = 0. In Section3 its solutions are given by three fractional linear transformations in which the main parameter runs through a subset of the class of generalized Schur functions. A generalized Schur function can be written as the characteristic function of a minimal coisometric colligation with a Pontryagin state space. In the second part of this paper we describe the colligation of a solution s(z) of the basic interpolation problem for generalized Schur functions in terms of the colligation of the corresponding parameter function and the interpolation data. First we consider the canonical coisometric realization of s(z) in which the state space is the reproducing kernel Pontryagin space with kernel ;see for example [6]. In the final section we follow a direct approach more in line with [2, 3]. More... »
PAGES39-76
Reproducing Kernel Spaces and Applications
ISBN
978-3-0348-9430-2
978-3-0348-8077-0
http://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2
DOIhttp://dx.doi.org/10.1007/978-3-0348-8077-0_2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037909250
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ben-Gurion University of the Negev",
"id": "https://www.grid.ac/institutes/grid.7489.2",
"name": [
"Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel"
],
"type": "Organization"
},
"familyName": "Alpay",
"givenName": "D.",
"id": "sg:person.011517101346.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Voronezh State University",
"id": "https://www.grid.ac/institutes/grid.20567.36",
"name": [
"Department of Mathematics, Voronezh State University, 394693, Voronezh, Russia"
],
"type": "Organization"
},
"familyName": "Azizov",
"givenName": "T. Ya.",
"id": "sg:person.012640546265.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "A.",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "TU Wien",
"id": "https://www.grid.ac/institutes/grid.5329.d",
"name": [
"Institute of Analysis and Technical Mathematics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria"
],
"type": "Organization"
},
"familyName": "Langer",
"givenName": "H.",
"id": "sg:person.07450173411.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Wanjala",
"givenName": "G.",
"id": "sg:person.012754335703.52",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754335703.52"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://app.dimensions.ai/details/publication/pub.1007624556",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8908-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007624556",
"https://doi.org/10.1007/978-3-0348-8908-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8908-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007624556",
"https://doi.org/10.1007/978-3-0348-8908-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mana.19770770116",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027367955"
],
"type": "CreativeWork"
},
{
"id": "https://app.dimensions.ai/details/publication/pub.1043119450",
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8632-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043119450",
"https://doi.org/10.1007/978-3-0348-8632-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8632-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043119450",
"https://doi.org/10.1007/978-3-0348-8632-1"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0895479891218922",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062881934"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.5802/aif.78",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1073139449"
],
"type": "CreativeWork"
}
],
"datePublished": "2003",
"datePublishedReg": "2003-01-01",
"description": "The basic interpolation problem for Schur functions is: Find all Schur functions s(z)for which s (0) has a given value. In this paper we consider the same basic interpolation problem but now for the class of generalized Schur functions with finitely many negative squares which are holomorphic at z = 0. In Section3 its solutions are given by three fractional linear transformations in which the main parameter runs through a subset of the class of generalized Schur functions. A generalized Schur function can be written as the characteristic function of a minimal coisometric colligation with a Pontryagin state space. In the second part of this paper we describe the colligation of a solution s(z) of the basic interpolation problem for generalized Schur functions in terms of the colligation of the corresponding parameter function and the interpolation data. First we consider the canonical coisometric realization of s(z) in which the state space is the reproducing kernel Pontryagin space with kernel ;see for example [6]. In the final section we follow a direct approach more in line with [2, 3].",
"editor": [
{
"familyName": "Alpay",
"givenName": "Daniel",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-0348-8077-0_2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-0348-9430-2",
"978-3-0348-8077-0"
],
"name": "Reproducing Kernel Spaces and Applications",
"type": "Book"
},
"name": "A Basic Interpolation Problem for Generalized Schur Functions and Coisometric Realizations",
"pagination": "39-76",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037909250"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-0348-8077-0_2"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"b49629d0ff240f12ed50aec8cfe787eab4c757852993d7799d4f3c028ac1ed98"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user Basel",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-0348-8077-0_2",
"https://app.dimensions.ai/details/publication/pub.1037909250"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T08:57",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68965_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-0348-8077-0_2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
23 PREDICATES
34 URIs
20 LITERALS
8 BLANK NODES