A Basic Interpolation Problem for Generalized Schur Functions and Coisometric Realizations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

D. Alpay , T. Ya. Azizov , A. Dijksma , H. Langer , G. Wanjala

ABSTRACT

The basic interpolation problem for Schur functions is: Find all Schur functions s(z)for which s (0) has a given value. In this paper we consider the same basic interpolation problem but now for the class of generalized Schur functions with finitely many negative squares which are holomorphic at z = 0. In Section3 its solutions are given by three fractional linear transformations in which the main parameter runs through a subset of the class of generalized Schur functions. A generalized Schur function can be written as the characteristic function of a minimal coisometric colligation with a Pontryagin state space. In the second part of this paper we describe the colligation of a solution s(z) of the basic interpolation problem for generalized Schur functions in terms of the colligation of the corresponding parameter function and the interpolation data. First we consider the canonical coisometric realization of s(z) in which the state space is the reproducing kernel Pontryagin space with kernel ;see for example [6]. In the final section we follow a direct approach more in line with [2, 3]. More... »

PAGES

39-76

Book

TITLE

Reproducing Kernel Spaces and Applications

ISBN

978-3-0348-9430-2
978-3-0348-8077-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2

DOI

http://dx.doi.org/10.1007/978-3-0348-8077-0_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037909250


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "D.", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Voronezh State University", 
          "id": "https://www.grid.ac/institutes/grid.20567.36", 
          "name": [
            "Department of Mathematics, Voronezh State University, 394693, Voronezh, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azizov", 
        "givenName": "T. Ya.", 
        "id": "sg:person.012640546265.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute of Analysis and Technical Mathematics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "H.", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wanjala", 
        "givenName": "G.", 
        "id": "sg:person.012754335703.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754335703.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007624556", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8908-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007624556", 
          "https://doi.org/10.1007/978-3-0348-8908-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8908-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007624556", 
          "https://doi.org/10.1007/978-3-0348-8908-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043119450", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8632-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043119450", 
          "https://doi.org/10.1007/978-3-0348-8632-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8632-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043119450", 
          "https://doi.org/10.1007/978-3-0348-8632-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479891218922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062881934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073139449"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "The basic interpolation problem for Schur functions is: Find all Schur functions s(z)for which s (0) has a given value. In this paper we consider the same basic interpolation problem but now for the class of generalized Schur functions with finitely many negative squares which are holomorphic at z = 0. In Section3 its solutions are given by three fractional linear transformations in which the main parameter runs through a subset of the class of generalized Schur functions. A generalized Schur function can be written as the characteristic function of a minimal coisometric colligation with a Pontryagin state space. In the second part of this paper we describe the colligation of a solution s(z) of the basic interpolation problem for generalized Schur functions in terms of the colligation of the corresponding parameter function and the interpolation data. First we consider the canonical coisometric realization of s(z) in which the state space is the reproducing kernel Pontryagin space with kernel ;see for example [6]. In the final section we follow a direct approach more in line with [2, 3].", 
    "editor": [
      {
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8077-0_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9430-2", 
        "978-3-0348-8077-0"
      ], 
      "name": "Reproducing Kernel Spaces and Applications", 
      "type": "Book"
    }, 
    "name": "A Basic Interpolation Problem for Generalized Schur Functions and Coisometric Realizations", 
    "pagination": "39-76", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037909250"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8077-0_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b49629d0ff240f12ed50aec8cfe787eab4c757852993d7799d4f3c028ac1ed98"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8077-0_2", 
      "https://app.dimensions.ai/details/publication/pub.1037909250"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000369_0000000369/records_68965_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8077-0_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8077-0_2'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8077-0_2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N560d8080a00c47ff9fcf7a303e4ce193
4 schema:citation sg:pub.10.1007/978-3-0348-8632-1
5 sg:pub.10.1007/978-3-0348-8908-7
6 https://app.dimensions.ai/details/publication/pub.1007624556
7 https://app.dimensions.ai/details/publication/pub.1043119450
8 https://doi.org/10.1002/mana.19770770116
9 https://doi.org/10.1137/s0895479891218922
10 https://doi.org/10.5802/aif.78
11 schema:datePublished 2003
12 schema:datePublishedReg 2003-01-01
13 schema:description The basic interpolation problem for Schur functions is: Find all Schur functions s(z)for which s (0) has a given value. In this paper we consider the same basic interpolation problem but now for the class of generalized Schur functions with finitely many negative squares which are holomorphic at z = 0. In Section3 its solutions are given by three fractional linear transformations in which the main parameter runs through a subset of the class of generalized Schur functions. A generalized Schur function can be written as the characteristic function of a minimal coisometric colligation with a Pontryagin state space. In the second part of this paper we describe the colligation of a solution s(z) of the basic interpolation problem for generalized Schur functions in terms of the colligation of the corresponding parameter function and the interpolation data. First we consider the canonical coisometric realization of s(z) in which the state space is the reproducing kernel Pontryagin space with kernel ;see for example [6]. In the final section we follow a direct approach more in line with [2, 3].
14 schema:editor N9dcb7778a8574dd896d4d4f78104d8fd
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nae9767c855804596846b06f2efd296c7
19 schema:name A Basic Interpolation Problem for Generalized Schur Functions and Coisometric Realizations
20 schema:pagination 39-76
21 schema:productId N11609e059c724cf7b9b6f1fb1fd17573
22 Nb4987bc39c5b471fb62a2c7dbbde8ca7
23 Nbd13856ae0bf4317930fb6deeb36288e
24 schema:publisher Ndaf0d7a7440b41fc80525f023e3df05b
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037909250
26 https://doi.org/10.1007/978-3-0348-8077-0_2
27 schema:sdDatePublished 2019-04-16T08:57
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N6f37c0d5edd2417a8a760003566fd00a
30 schema:url https://link.springer.com/10.1007%2F978-3-0348-8077-0_2
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N11609e059c724cf7b9b6f1fb1fd17573 schema:name readcube_id
35 schema:value b49629d0ff240f12ed50aec8cfe787eab4c757852993d7799d4f3c028ac1ed98
36 rdf:type schema:PropertyValue
37 N1b8cb3cb8f514139ab9231eac1bb7eed schema:familyName Alpay
38 schema:givenName Daniel
39 rdf:type schema:Person
40 N214e3279e83a487c85e8f47014033507 rdf:first sg:person.07450173411.71
41 rdf:rest Nb1d2664d395a4e5f9b067954a79291a6
42 N560d8080a00c47ff9fcf7a303e4ce193 rdf:first sg:person.011517101346.40
43 rdf:rest Nf7dd7be0d4674e7e9d6a3cb94c19cffe
44 N6f37c0d5edd2417a8a760003566fd00a schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N9dcb7778a8574dd896d4d4f78104d8fd rdf:first N1b8cb3cb8f514139ab9231eac1bb7eed
47 rdf:rest rdf:nil
48 Nae9767c855804596846b06f2efd296c7 schema:isbn 978-3-0348-8077-0
49 978-3-0348-9430-2
50 schema:name Reproducing Kernel Spaces and Applications
51 rdf:type schema:Book
52 Nb1d2664d395a4e5f9b067954a79291a6 rdf:first sg:person.012754335703.52
53 rdf:rest rdf:nil
54 Nb4987bc39c5b471fb62a2c7dbbde8ca7 schema:name dimensions_id
55 schema:value pub.1037909250
56 rdf:type schema:PropertyValue
57 Nbd13856ae0bf4317930fb6deeb36288e schema:name doi
58 schema:value 10.1007/978-3-0348-8077-0_2
59 rdf:type schema:PropertyValue
60 Nd387a49165df4096a6ab4c2aa6088801 rdf:first sg:person.013762723211.39
61 rdf:rest N214e3279e83a487c85e8f47014033507
62 Ndaf0d7a7440b41fc80525f023e3df05b schema:location Basel
63 schema:name Birkhäuser Basel
64 rdf:type schema:Organisation
65 Nf7dd7be0d4674e7e9d6a3cb94c19cffe rdf:first sg:person.012640546265.41
66 rdf:rest Nd387a49165df4096a6ab4c2aa6088801
67 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
68 schema:name Mathematical Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
71 schema:name Pure Mathematics
72 rdf:type schema:DefinedTerm
73 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
74 schema:familyName Alpay
75 schema:givenName D.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
77 rdf:type schema:Person
78 sg:person.012640546265.41 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
79 schema:familyName Azizov
80 schema:givenName T. Ya.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41
82 rdf:type schema:Person
83 sg:person.012754335703.52 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
84 schema:familyName Wanjala
85 schema:givenName G.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754335703.52
87 rdf:type schema:Person
88 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
89 schema:familyName Dijksma
90 schema:givenName A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
92 rdf:type schema:Person
93 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
94 schema:familyName Langer
95 schema:givenName H.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-0348-8632-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043119450
99 https://doi.org/10.1007/978-3-0348-8632-1
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-0348-8908-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007624556
102 https://doi.org/10.1007/978-3-0348-8908-7
103 rdf:type schema:CreativeWork
104 https://app.dimensions.ai/details/publication/pub.1007624556 schema:CreativeWork
105 https://app.dimensions.ai/details/publication/pub.1043119450 schema:CreativeWork
106 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1137/s0895479891218922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881934
109 rdf:type schema:CreativeWork
110 https://doi.org/10.5802/aif.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139449
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.20567.36 schema:alternateName Voronezh State University
113 schema:name Department of Mathematics, Voronezh State University, 394693, Voronezh, Russia
114 rdf:type schema:Organization
115 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
116 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV, Groningen, The Netherlands
117 rdf:type schema:Organization
118 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
119 schema:name Institute of Analysis and Technical Mathematics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
120 rdf:type schema:Organization
121 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
122 schema:name Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...