Coarea Properties of Sobolev Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Jan Malý

ABSTRACT

The Lusin N-property is well known as a criterion for validity of theorems on change of variables in integral. Here we consider related properties motivated by the coarea formula. They also imply a generalization of Eilenberg’s inequality. We prove them for functions with gradient in the Lorentz space Lm,1. This relies on estimates of Hausdorff content of level sets for Sobolev functions and analysis of their Lebesgue points. A significant part of the presented results has its origin in a joint work with David Swanson and William P. Ziemer. More... »

PAGES

371-381

References to SciGraph publications

Book

TITLE

Function Spaces, Differential Operators and Nonlinear Analysis

ISBN

978-3-0348-9414-2
978-3-0348-8035-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-8035-0_26

DOI

http://dx.doi.org/10.1007/978-3-0348-8035-0_26

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033098914


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Charles University", 
          "id": "https://www.grid.ac/institutes/grid.4491.8", 
          "name": [
            "School of Mathematics, KMA, Charles University in Prague, Sokolovsk\u00e1 83, CZ-18675, Praha 8, Czech Republic"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mal\u00fd", 
        "givenName": "Jan", 
        "id": "sg:person.016026347345.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00971658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007358265", 
          "https://doi.org/10.1007/bf00971658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00971658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007358265", 
          "https://doi.org/10.1007/bf00971658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9904-1973-13319-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034337374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036075514", 
          "https://doi.org/10.1007/bf02392793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1995.458.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047886897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1974-0344390-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049021917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s002290050197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049664804", 
          "https://doi.org/10.1007/s002290050197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1972v027n06abeh001393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058194054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/surv/051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1215/ijm/1255456061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112495567"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "The Lusin N-property is well known as a criterion for validity of theorems on change of variables in integral. Here we consider related properties motivated by the coarea formula. They also imply a generalization of Eilenberg\u2019s inequality. We prove them for functions with gradient in the Lorentz space Lm,1. This relies on estimates of Hausdorff content of level sets for Sobolev functions and analysis of their Lebesgue points. A significant part of the presented results has its origin in a joint work with David Swanson and William P. Ziemer.", 
    "editor": [
      {
        "familyName": "Haroske", 
        "givenName": "Dorothee", 
        "type": "Person"
      }, 
      {
        "familyName": "Runst", 
        "givenName": "Thomas", 
        "type": "Person"
      }, 
      {
        "familyName": "Schmeisser", 
        "givenName": "Hans-J\u00fcrgen", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-8035-0_26", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9414-2", 
        "978-3-0348-8035-0"
      ], 
      "name": "Function Spaces, Differential Operators and Nonlinear Analysis", 
      "type": "Book"
    }, 
    "name": "Coarea Properties of Sobolev Functions", 
    "pagination": "371-381", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033098914"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-8035-0_26"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9dad90ab4910cad78e81a16cb58981fd3d546626ad409d571be8545b721fd5fd"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-8035-0_26", 
      "https://app.dimensions.ai/details/publication/pub.1033098914"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13069_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-8035-0_26"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8035-0_26'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8035-0_26'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8035-0_26'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-8035-0_26'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-8035-0_26 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nceddab7e18bf48e4b0612f2c0cdee22f
4 schema:citation sg:pub.10.1007/bf00971658
5 sg:pub.10.1007/bf02392793
6 sg:pub.10.1007/s002290050197
7 https://doi.org/10.1070/rm1972v027n06abeh001393
8 https://doi.org/10.1090/s0002-9904-1973-13319-1
9 https://doi.org/10.1090/s0002-9947-1974-0344390-6
10 https://doi.org/10.1090/surv/051
11 https://doi.org/10.1215/ijm/1255456061
12 https://doi.org/10.1515/crll.1995.458.19
13 schema:datePublished 2003
14 schema:datePublishedReg 2003-01-01
15 schema:description The Lusin N-property is well known as a criterion for validity of theorems on change of variables in integral. Here we consider related properties motivated by the coarea formula. They also imply a generalization of Eilenberg’s inequality. We prove them for functions with gradient in the Lorentz space Lm,1. This relies on estimates of Hausdorff content of level sets for Sobolev functions and analysis of their Lebesgue points. A significant part of the presented results has its origin in a joint work with David Swanson and William P. Ziemer.
16 schema:editor N8bc77b8c4bd6407490ac0e0fa3974c41
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Na18667dd20764b0e8a5cb2181760bccf
21 schema:name Coarea Properties of Sobolev Functions
22 schema:pagination 371-381
23 schema:productId N0bf3dc3a32c844e0a52571b7fdd8398e
24 N1185e547f8ce4c17a7c16033fcdc4915
25 Nfca8970580bf4db4951e1a1f6ee58436
26 schema:publisher N5288ea8eb84f4c08b185fb1879023d1c
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033098914
28 https://doi.org/10.1007/978-3-0348-8035-0_26
29 schema:sdDatePublished 2019-04-16T09:33
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N2777a21858594b07a8516c601fa7bccf
32 schema:url https://link.springer.com/10.1007%2F978-3-0348-8035-0_26
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N0bf3dc3a32c844e0a52571b7fdd8398e schema:name readcube_id
37 schema:value 9dad90ab4910cad78e81a16cb58981fd3d546626ad409d571be8545b721fd5fd
38 rdf:type schema:PropertyValue
39 N1185e547f8ce4c17a7c16033fcdc4915 schema:name doi
40 schema:value 10.1007/978-3-0348-8035-0_26
41 rdf:type schema:PropertyValue
42 N2777a21858594b07a8516c601fa7bccf schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N5288ea8eb84f4c08b185fb1879023d1c schema:location Basel
45 schema:name Birkhäuser Basel
46 rdf:type schema:Organisation
47 N55fe766f285c481299b4cb6dddb217c0 schema:familyName Schmeisser
48 schema:givenName Hans-Jürgen
49 rdf:type schema:Person
50 N7d4a71f5900b4ea48390b353627df7d2 schema:familyName Runst
51 schema:givenName Thomas
52 rdf:type schema:Person
53 N8102d109da7049ebbf757375c57c1a4a rdf:first N55fe766f285c481299b4cb6dddb217c0
54 rdf:rest rdf:nil
55 N8bc77b8c4bd6407490ac0e0fa3974c41 rdf:first Nc9031a81b5d847958b1c47c11990bc8f
56 rdf:rest N92c51e86abe349749a948dc6570e696b
57 N92c51e86abe349749a948dc6570e696b rdf:first N7d4a71f5900b4ea48390b353627df7d2
58 rdf:rest N8102d109da7049ebbf757375c57c1a4a
59 Na18667dd20764b0e8a5cb2181760bccf schema:isbn 978-3-0348-8035-0
60 978-3-0348-9414-2
61 schema:name Function Spaces, Differential Operators and Nonlinear Analysis
62 rdf:type schema:Book
63 Nc9031a81b5d847958b1c47c11990bc8f schema:familyName Haroske
64 schema:givenName Dorothee
65 rdf:type schema:Person
66 Nceddab7e18bf48e4b0612f2c0cdee22f rdf:first sg:person.016026347345.35
67 rdf:rest rdf:nil
68 Nfca8970580bf4db4951e1a1f6ee58436 schema:name dimensions_id
69 schema:value pub.1033098914
70 rdf:type schema:PropertyValue
71 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
72 schema:name Biological Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
75 schema:name Biochemistry and Cell Biology
76 rdf:type schema:DefinedTerm
77 sg:person.016026347345.35 schema:affiliation https://www.grid.ac/institutes/grid.4491.8
78 schema:familyName Malý
79 schema:givenName Jan
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016026347345.35
81 rdf:type schema:Person
82 sg:pub.10.1007/bf00971658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007358265
83 https://doi.org/10.1007/bf00971658
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf02392793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036075514
86 https://doi.org/10.1007/bf02392793
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/s002290050197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049664804
89 https://doi.org/10.1007/s002290050197
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1070/rm1972v027n06abeh001393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058194054
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1090/s0002-9904-1973-13319-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034337374
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1090/s0002-9947-1974-0344390-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049021917
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1090/surv/051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741749
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1215/ijm/1255456061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112495567
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1515/crll.1995.458.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047886897
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.4491.8 schema:alternateName Charles University
104 schema:name School of Mathematics, KMA, Charles University in Prague, Sokolovská 83, CZ-18675, Praha 8, Czech Republic
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...