Physical Basis of Interference Effects in Hearing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Thomas Duke , Daniel Andor , Frank Jülicher

ABSTRACT

To capture faint sounds, the ear uses an active system of amplification. We and our colleagues have put forward the idea that the amplifier comprises a set of ‘self-tuned critical oscillators’: each hair cell contains a force-generating dynamical system which is maintained at the threshold of an oscillatory instability, or Hopf bifurcation. The active response to a puretoneis perfectly suited to the ear’s needs, since it provides frequency selectivity, exquisite sensitivity and wide dynamic range. However, the intrinsic nonlinearity of the mechanism causes tones ofdifferentfrequency to interfere with one another in the cochlea. In order to provide a framework for understanding how the ear processes the more complex sounds of speech and music, we have examined the response of a critical Hopf oscillator totwo tones.Our calculations indicate how the response to one tone is suppressed by the presence of a second tone of similar frequency. They also show how a characteristic spectrum of distortion products is generated. The results are in accord with experimental observations of basilar membrane motion. Given the complexity of the nonlinear response, how does the ear distinguish the frequency components of a sound source? We propose a simple model of pitch extraction based on the timings of neural spikes, and investigate to what extent psychophysical phenomena such as the sensation of dissonance and auditory illusions can be attributed to the physical nature of the peripheral detection apparatus. More... »

PAGES

667-669

Book

TITLE

International Conference on Theoretical Physics

ISBN

978-3-0348-9618-4
978-3-0348-7907-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-7907-1_51

DOI

http://dx.doi.org/10.1007/978-3-0348-7907-1_51

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003336899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cavendish Laboratory, Madingley Road, CB3 OHE, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Duke", 
        "givenName": "Thomas", 
        "id": "sg:person.01351132206.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351132206.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Cavendish Laboratory, Madingley Road, CB3 OHE, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andor", 
        "givenName": "Daniel", 
        "id": "sg:person.01214446047.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214446047.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for the Physics of Complex Systems", 
          "id": "https://www.grid.ac/institutes/grid.419560.f", 
          "name": [
            "Institut Curie Physicochimie, UMR CNRS/IC 168, 26, rue d\u2019Ulm, F-75248, Paris Cedex 05, France", 
            "Max-Planck Institut f\u00fcr Physik komplexer Systeme, N\u00f6thnitzerstr. 38, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "J\u00fclicher", 
        "givenName": "Frank", 
        "id": "sg:person.0640775172.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640775172.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.151257898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014002448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021431718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.5232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021431718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.251530498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052115074"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "To capture faint sounds, the ear uses an active system of amplification. We and our colleagues have put forward the idea that the amplifier comprises a set of \u2018self-tuned critical oscillators\u2019: each hair cell contains a force-generating dynamical system which is maintained at the threshold of an oscillatory instability, or Hopf bifurcation. The active response to a puretoneis perfectly suited to the ear\u2019s needs, since it provides frequency selectivity, exquisite sensitivity and wide dynamic range. However, the intrinsic nonlinearity of the mechanism causes tones ofdifferentfrequency to interfere with one another in the cochlea. In order to provide a framework for understanding how the ear processes the more complex sounds of speech and music, we have examined the response of a critical Hopf oscillator totwo tones.Our calculations indicate how the response to one tone is suppressed by the presence of a second tone of similar frequency. They also show how a characteristic spectrum of distortion products is generated. The results are in accord with experimental observations of basilar membrane motion. Given the complexity of the nonlinear response, how does the ear distinguish the frequency components of a sound source? We propose a simple model of pitch extraction based on the timings of neural spikes, and investigate to what extent psychophysical phenomena such as the sensation of dissonance and auditory illusions can be attributed to the physical nature of the peripheral detection apparatus.", 
    "editor": [
      {
        "familyName": "Iagolnitzer", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Rivasseau", 
        "givenName": "Vincent", 
        "type": "Person"
      }, 
      {
        "familyName": "Zinn-Justin", 
        "givenName": "Jean", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-7907-1_51", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9618-4", 
        "978-3-0348-7907-1"
      ], 
      "name": "International Conference on Theoretical Physics", 
      "type": "Book"
    }, 
    "name": "Physical Basis of Interference Effects in Hearing", 
    "pagination": "667-669", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003336899"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-7907-1_51"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0fe53d88d4e3546a5313969072e111d6d679f8dc21a5cc2cc9e6fd3393fbee1c"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-7907-1_51", 
      "https://app.dimensions.ai/details/publication/pub.1003336899"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130829_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-7907-1_51"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7907-1_51'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7907-1_51'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7907-1_51'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7907-1_51'


 

This table displays all metadata directly associated to this object as RDF triples.

102 TRIPLES      23 PREDICATES      30 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-7907-1_51 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N0609f3c446b54488bef6544f486e0786
4 schema:citation https://doi.org/10.1073/pnas.151257898
5 https://doi.org/10.1073/pnas.251530498
6 https://doi.org/10.1103/physrevlett.84.5232
7 schema:datePublished 2003
8 schema:datePublishedReg 2003-01-01
9 schema:description To capture faint sounds, the ear uses an active system of amplification. We and our colleagues have put forward the idea that the amplifier comprises a set of ‘self-tuned critical oscillators’: each hair cell contains a force-generating dynamical system which is maintained at the threshold of an oscillatory instability, or Hopf bifurcation. The active response to a puretoneis perfectly suited to the ear’s needs, since it provides frequency selectivity, exquisite sensitivity and wide dynamic range. However, the intrinsic nonlinearity of the mechanism causes tones ofdifferentfrequency to interfere with one another in the cochlea. In order to provide a framework for understanding how the ear processes the more complex sounds of speech and music, we have examined the response of a critical Hopf oscillator totwo tones.Our calculations indicate how the response to one tone is suppressed by the presence of a second tone of similar frequency. They also show how a characteristic spectrum of distortion products is generated. The results are in accord with experimental observations of basilar membrane motion. Given the complexity of the nonlinear response, how does the ear distinguish the frequency components of a sound source? We propose a simple model of pitch extraction based on the timings of neural spikes, and investigate to what extent psychophysical phenomena such as the sensation of dissonance and auditory illusions can be attributed to the physical nature of the peripheral detection apparatus.
10 schema:editor N9a6fc04160624290aa603810f357f5e5
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N40e2687414a148dc8488d68ba676c7b8
15 schema:name Physical Basis of Interference Effects in Hearing
16 schema:pagination 667-669
17 schema:productId N7bcd5b7e9ec24d888b819e3dd873b4a9
18 N81be4111747847c398f21a86907e1ce6
19 Nb3954b2210fa4393a84352aa1c6d3480
20 schema:publisher N08430cd15b9143e18b413884762cb96a
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003336899
22 https://doi.org/10.1007/978-3-0348-7907-1_51
23 schema:sdDatePublished 2019-04-16T09:20
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N06e121bfddb74881b15c9ccb19028c11
26 schema:url https://link.springer.com/10.1007%2F978-3-0348-7907-1_51
27 sgo:license sg:explorer/license/
28 sgo:sdDataset chapters
29 rdf:type schema:Chapter
30 N0609f3c446b54488bef6544f486e0786 rdf:first sg:person.01351132206.23
31 rdf:rest Nf8205d0a4e8b4cb290afa774fd6e0d95
32 N06e121bfddb74881b15c9ccb19028c11 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N08430cd15b9143e18b413884762cb96a schema:location Basel
35 schema:name Birkhäuser Basel
36 rdf:type schema:Organisation
37 N12027848018e4869bfa337aee5b91816 schema:familyName Rivasseau
38 schema:givenName Vincent
39 rdf:type schema:Person
40 N35deb1d9fb81404b9a8b0a8768cac2bb rdf:first N12027848018e4869bfa337aee5b91816
41 rdf:rest Nace4fd0c9137461ab07d68543cfda743
42 N40e2687414a148dc8488d68ba676c7b8 schema:isbn 978-3-0348-7907-1
43 978-3-0348-9618-4
44 schema:name International Conference on Theoretical Physics
45 rdf:type schema:Book
46 N5c5ebffb50f34fa895bea362d660ca3a rdf:first sg:person.0640775172.62
47 rdf:rest rdf:nil
48 N7bcd5b7e9ec24d888b819e3dd873b4a9 schema:name readcube_id
49 schema:value 0fe53d88d4e3546a5313969072e111d6d679f8dc21a5cc2cc9e6fd3393fbee1c
50 rdf:type schema:PropertyValue
51 N81be4111747847c398f21a86907e1ce6 schema:name dimensions_id
52 schema:value pub.1003336899
53 rdf:type schema:PropertyValue
54 N9a6fc04160624290aa603810f357f5e5 rdf:first Ne75a5140226a4cf79f32275923d2cf9f
55 rdf:rest N35deb1d9fb81404b9a8b0a8768cac2bb
56 Nace4fd0c9137461ab07d68543cfda743 rdf:first Nf7222afc1661404b885f3d91ea2a9f8d
57 rdf:rest rdf:nil
58 Nb3954b2210fa4393a84352aa1c6d3480 schema:name doi
59 schema:value 10.1007/978-3-0348-7907-1_51
60 rdf:type schema:PropertyValue
61 Ne75a5140226a4cf79f32275923d2cf9f schema:familyName Iagolnitzer
62 schema:givenName Daniel
63 rdf:type schema:Person
64 Nf7222afc1661404b885f3d91ea2a9f8d schema:familyName Zinn-Justin
65 schema:givenName Jean
66 rdf:type schema:Person
67 Nf8205d0a4e8b4cb290afa774fd6e0d95 rdf:first sg:person.01214446047.44
68 rdf:rest N5c5ebffb50f34fa895bea362d660ca3a
69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
73 schema:name Other Physical Sciences
74 rdf:type schema:DefinedTerm
75 sg:person.01214446047.44 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
76 schema:familyName Andor
77 schema:givenName Daniel
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214446047.44
79 rdf:type schema:Person
80 sg:person.01351132206.23 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
81 schema:familyName Duke
82 schema:givenName Thomas
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351132206.23
84 rdf:type schema:Person
85 sg:person.0640775172.62 schema:affiliation https://www.grid.ac/institutes/grid.419560.f
86 schema:familyName Jülicher
87 schema:givenName Frank
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640775172.62
89 rdf:type schema:Person
90 https://doi.org/10.1073/pnas.151257898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014002448
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1073/pnas.251530498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052115074
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevlett.84.5232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021431718
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.419560.f schema:alternateName Max Planck Institute for the Physics of Complex Systems
97 schema:name Institut Curie Physicochimie, UMR CNRS/IC 168, 26, rue d’Ulm, F-75248, Paris Cedex 05, France
98 Max-Planck Institut für Physik komplexer Systeme, Nöthnitzerstr. 38, D-01187, Dresden, Germany
99 rdf:type schema:Organization
100 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
101 schema:name Cavendish Laboratory, Madingley Road, CB3 OHE, Cambridge, UK
102 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...