Cell Shape Normalization of Normal and Haploinsufficient NF1-Melanocytes by Micro-Structured Substrate Interaction View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Ralf Kemkemer , Hans Gruler , Dieter Kaufmann , Joachim P. Spatz

ABSTRACT

Cell shape is influenced by physical surface topography of the substrate to which cells are attached [23,8]. Most prominent is the polarization and elongation of cells along the direction of microfabricated grooves. Microstructured substrates are also known to affect intracellular processes such as apoptosis [8], gene expression [9] or protein production [6]. However, little is known about the mechanism of how surface topography exerts its effects, although several studies have focused on the role of cytoskeletal elements such as actin microfilaments [29], focal contacts [28],and microtubules [24] as all these structures are observed to align with topographic features such as grooves. Most of these experiments were performed with cultured fibroblasts where filament structures showed to align along microstructured lines. We examined cell shape alternations of human melanocyte cells cultured on micro-grooved polymeric substrates. These cells were derived from healthy persons and patients suffering on Neurofibromatosis 1 (NF1). NF1 is caused by a germline mutation in the NFI-gene a classical tumor suppressor gene. The majority of the NF1 mutations are null mutations resulting in reduction of the related protein product, neurofibromin, to about 50% [16,11]. Neurofibromin shows a Ras-GAP activity [14,21] and is involved in regulation of growthin vitro [1,20]. In addition, it is found to be associated with the cytoskeleton (Xu and Gutmann 1997) and NF1 deficient cells exhibit morphological changes, as demonstrated for Nfl-/- Schwann cells [20] or cells from Drosophila homozygous for null mutations of an NF1 homolog [27]. Neurofibromin reduction can also result in morphological changes in cultured human NF1 keratinocytes in which it is co-localized with intermediate filaments [22]. We demonstrated that the cellular consequence of haploinsufficiency More... »

PAGES

185-197

References to SciGraph publications

Book

TITLE

Function and Regulation of Cellular Systems

ISBN

978-3-0348-9614-6
978-3-0348-7895-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_17

DOI

http://dx.doi.org/10.1007/978-3-0348-7895-1_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023627254


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Biophysical Chemistry, Institute for Physical Chemistry, Heidelberg University, Im Neuenheimerfeld 253, Heidelberg, D-69120, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kemkemer", 
        "givenName": "Ralf", 
        "id": "sg:person.01204541513.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204541513.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Biophysics, Ulm University, Albert-Einstein-Allee 11, D-89081\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gruler", 
        "givenName": "Hans", 
        "id": "sg:person.054664240.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.054664240.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Department of Human Genetics, Ulm University, Albert-Einstein-Allee 11, D-89081\u00a0Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaufmann", 
        "givenName": "Dieter", 
        "id": "sg:person.01343012452.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343012452.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Heidelberg University", 
          "id": "https://www.grid.ac/institutes/grid.7700.0", 
          "name": [
            "Biophysical Chemistry, Institute for Physical Chemistry, Heidelberg University, Im Neuenheimerfeld 253, Heidelberg, D-69120, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spatz", 
        "givenName": "Joachim P.", 
        "id": "sg:person.01021262324.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021262324.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-96807-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000578773", 
          "https://doi.org/10.1007/978-3-642-96807-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96807-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000578773", 
          "https://doi.org/10.1007/978-3-642-96807-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bioeng.3.1.335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002076643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1385/cbb:33:1:33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004376268", 
          "https://doi.org/10.1385/cbb:33:1:33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/mcb.17.2.862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007444613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02738066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008470204", 
          "https://doi.org/10.1007/bf02738066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02738066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008470204", 
          "https://doi.org/10.1007/bf02738066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-4636(20000905)51:3<529::aid-jbm30>3.0.co;2-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008597504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-8993(97)00328-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010337211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jez.1400170403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025082492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4636(199908)46:2<212::aid-jbm10>3.0.co;2-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029013413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/7.8.1261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030759706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.1997.7097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031814666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1098-1136(20010315)33:4<314::aid-glia1030>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032450454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0142-9612(97)00144-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037589994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cm.970310106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040953772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-4827(86)90450-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043407875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0896-6273(93)90324-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046800924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1046/j.1523-1747.2000.00882.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047952036", 
          "https://doi.org/10.1046/j.1523-1747.2000.00882.x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/bchm3.1995.376.2.91", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047970253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng0494-331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051749769", 
          "https://doi.org/10.1038/ng0494-331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101890050024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052768027", 
          "https://doi.org/10.1007/s101890050024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156856298x00415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053219120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.26.15641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053484189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101890070023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054521717", 
          "https://doi.org/10.1007/s101890070023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.2798042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062082508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5313.791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.276.5317.1425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062556863"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Cell shape is influenced by physical surface topography of the substrate to which cells are attached [23,8]. Most prominent is the polarization and elongation of cells along the direction of microfabricated grooves. Microstructured substrates are also known to affect intracellular processes such as apoptosis [8], gene expression [9] or protein production [6]. However, little is known about the mechanism of how surface topography exerts its effects, although several studies have focused on the role of cytoskeletal elements such as actin microfilaments [29], focal contacts [28],and microtubules [24] as all these structures are observed to align with topographic features such as grooves. Most of these experiments were performed with cultured fibroblasts where filament structures showed to align along microstructured lines. We examined cell shape alternations of human melanocyte cells cultured on micro-grooved polymeric substrates. These cells were derived from healthy persons and patients suffering on Neurofibromatosis 1 (NF1). NF1 is caused by a germline mutation in the NFI-gene a classical tumor suppressor gene. The majority of the NF1 mutations are null mutations resulting in reduction of the related protein product, neurofibromin, to about 50% [16,11]. Neurofibromin shows a Ras-GAP activity [14,21] and is involved in regulation of growthin vitro [1,20]. In addition, it is found to be associated with the cytoskeleton (Xu and Gutmann 1997) and NF1 deficient cells exhibit morphological changes, as demonstrated for Nfl-/- Schwann cells [20] or cells from Drosophila homozygous for null mutations of an NF1 homolog [27]. Neurofibromin reduction can also result in morphological changes in cultured human NF1 keratinocytes in which it is co-localized with intermediate filaments [22]. We demonstrated that the cellular consequence of haploinsufficiency", 
    "editor": [
      {
        "familyName": "Deutsch", 
        "givenName": "Andreas", 
        "type": "Person"
      }, 
      {
        "familyName": "Howard", 
        "givenName": "Jonathon", 
        "type": "Person"
      }, 
      {
        "familyName": "Falcke", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Zimmermann", 
        "givenName": "Walter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-7895-1_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9614-6", 
        "978-3-0348-7895-1"
      ], 
      "name": "Function and Regulation of Cellular Systems", 
      "type": "Book"
    }, 
    "name": "Cell Shape Normalization of Normal and Haploinsufficient NF1-Melanocytes by Micro-Structured Substrate Interaction", 
    "pagination": "185-197", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-7895-1_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "709119d32443ef7c0c2834bc66b5622848210e2698d8889f1243a21489924996"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023627254"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-7895-1_17", 
      "https://app.dimensions.ai/details/publication/pub.1023627254"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000558.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-7895-1_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_17'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      23 PREDICATES      54 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-7895-1_17 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N33d068c7828b4a2aa6e91dd9ac5b4306
4 schema:citation sg:pub.10.1007/978-3-642-96807-5
5 sg:pub.10.1007/bf02738066
6 sg:pub.10.1007/s101890050024
7 sg:pub.10.1007/s101890070023
8 sg:pub.10.1038/ng0494-331
9 sg:pub.10.1046/j.1523-1747.2000.00882.x
10 sg:pub.10.1385/cbb:33:1:33
11 https://doi.org/10.1002/(sici)1097-4636(199908)46:2<212::aid-jbm10>3.0.co;2-y
12 https://doi.org/10.1002/1097-4636(20000905)51:3<529::aid-jbm30>3.0.co;2-r
13 https://doi.org/10.1002/1098-1136(20010315)33:4<314::aid-glia1030>3.0.co;2-q
14 https://doi.org/10.1002/cm.970310106
15 https://doi.org/10.1002/jez.1400170403
16 https://doi.org/10.1006/bbrc.1997.7097
17 https://doi.org/10.1016/0014-4827(86)90450-7
18 https://doi.org/10.1016/0896-6273(93)90324-k
19 https://doi.org/10.1016/s0006-8993(97)00328-4
20 https://doi.org/10.1016/s0142-9612(97)00144-0
21 https://doi.org/10.1073/pnas.95.26.15641
22 https://doi.org/10.1086/302809
23 https://doi.org/10.1093/hmg/7.8.1261
24 https://doi.org/10.1115/1.2798042
25 https://doi.org/10.1126/science.276.5313.791
26 https://doi.org/10.1126/science.276.5317.1425
27 https://doi.org/10.1128/mcb.17.2.862
28 https://doi.org/10.1146/annurev.bioeng.3.1.335
29 https://doi.org/10.1163/156856298x00415
30 https://doi.org/10.1515/bchm3.1995.376.2.91
31 schema:datePublished 2004
32 schema:datePublishedReg 2004-01-01
33 schema:description Cell shape is influenced by physical surface topography of the substrate to which cells are attached [23,8]. Most prominent is the polarization and elongation of cells along the direction of microfabricated grooves. Microstructured substrates are also known to affect intracellular processes such as apoptosis [8], gene expression [9] or protein production [6]. However, little is known about the mechanism of how surface topography exerts its effects, although several studies have focused on the role of cytoskeletal elements such as actin microfilaments [29], focal contacts [28],and microtubules [24] as all these structures are observed to align with topographic features such as grooves. Most of these experiments were performed with cultured fibroblasts where filament structures showed to align along microstructured lines. We examined cell shape alternations of human melanocyte cells cultured on micro-grooved polymeric substrates. These cells were derived from healthy persons and patients suffering on Neurofibromatosis 1 (NF1). NF1 is caused by a germline mutation in the NFI-gene a classical tumor suppressor gene. The majority of the NF1 mutations are null mutations resulting in reduction of the related protein product, neurofibromin, to about 50% [16,11]. Neurofibromin shows a Ras-GAP activity [14,21] and is involved in regulation of growthin vitro [1,20]. In addition, it is found to be associated with the cytoskeleton (Xu and Gutmann 1997) and NF1 deficient cells exhibit morphological changes, as demonstrated for Nfl-/- Schwann cells [20] or cells from Drosophila homozygous for null mutations of an NF1 homolog [27]. Neurofibromin reduction can also result in morphological changes in cultured human NF1 keratinocytes in which it is co-localized with intermediate filaments [22]. We demonstrated that the cellular consequence of haploinsufficiency
34 schema:editor Nd7a1d6b4e75048308a016bdf19855143
35 schema:genre chapter
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N598f6a9ba96f4939ad5da608e5776f7b
39 schema:name Cell Shape Normalization of Normal and Haploinsufficient NF1-Melanocytes by Micro-Structured Substrate Interaction
40 schema:pagination 185-197
41 schema:productId N82fbf053a5c843e5a3b5d148c973e572
42 N86843639b9114ad7a0f2ad83df6ebd28
43 Nb4019841a05746d1a0e8abff365076e9
44 schema:publisher N1793b99ff46e46f386973d830ef0bfe2
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023627254
46 https://doi.org/10.1007/978-3-0348-7895-1_17
47 schema:sdDatePublished 2019-04-15T20:39
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Na7210111f45c459eb0129a591bb7ce77
50 schema:url http://link.springer.com/10.1007/978-3-0348-7895-1_17
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N10219793d572481ea4067939bd775bfe schema:familyName Howard
55 schema:givenName Jonathon
56 rdf:type schema:Person
57 N1793b99ff46e46f386973d830ef0bfe2 schema:location Basel
58 schema:name Birkhäuser Basel
59 rdf:type schema:Organisation
60 N1b54a7d5c6bd420fadff573efdef8db7 rdf:first N953fab2260244ebd93bf7c7e9552ce3f
61 rdf:rest N80b14e23c87c46e18d0c7e36a8b26440
62 N33d068c7828b4a2aa6e91dd9ac5b4306 rdf:first sg:person.01204541513.25
63 rdf:rest Ncc11ed37d59c4be3ab30d5807def67d4
64 N497d1bef33ad444da2789c6296e2d626 rdf:first N10219793d572481ea4067939bd775bfe
65 rdf:rest N1b54a7d5c6bd420fadff573efdef8db7
66 N598f6a9ba96f4939ad5da608e5776f7b schema:isbn 978-3-0348-7895-1
67 978-3-0348-9614-6
68 schema:name Function and Regulation of Cellular Systems
69 rdf:type schema:Book
70 N80b14e23c87c46e18d0c7e36a8b26440 rdf:first Ndc2df8d58d55404b94db23c1f04ed91c
71 rdf:rest rdf:nil
72 N82fbf053a5c843e5a3b5d148c973e572 schema:name dimensions_id
73 schema:value pub.1023627254
74 rdf:type schema:PropertyValue
75 N86843639b9114ad7a0f2ad83df6ebd28 schema:name doi
76 schema:value 10.1007/978-3-0348-7895-1_17
77 rdf:type schema:PropertyValue
78 N953fab2260244ebd93bf7c7e9552ce3f schema:familyName Falcke
79 schema:givenName Martin
80 rdf:type schema:Person
81 Na7210111f45c459eb0129a591bb7ce77 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nb4019841a05746d1a0e8abff365076e9 schema:name readcube_id
84 schema:value 709119d32443ef7c0c2834bc66b5622848210e2698d8889f1243a21489924996
85 rdf:type schema:PropertyValue
86 Nb743962120064a16b0d5884cc060f836 rdf:first sg:person.01021262324.27
87 rdf:rest rdf:nil
88 Ncc11ed37d59c4be3ab30d5807def67d4 rdf:first sg:person.054664240.14
89 rdf:rest Nf220bd54332f45ecb61a7d91d9995671
90 Nd7a1d6b4e75048308a016bdf19855143 rdf:first Ne28564fd4b8244fc8aec3b02bee94bd8
91 rdf:rest N497d1bef33ad444da2789c6296e2d626
92 Ndc2df8d58d55404b94db23c1f04ed91c schema:familyName Zimmermann
93 schema:givenName Walter
94 rdf:type schema:Person
95 Ne28564fd4b8244fc8aec3b02bee94bd8 schema:familyName Deutsch
96 schema:givenName Andreas
97 rdf:type schema:Person
98 Nf220bd54332f45ecb61a7d91d9995671 rdf:first sg:person.01343012452.29
99 rdf:rest Nb743962120064a16b0d5884cc060f836
100 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
101 schema:name Biological Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
104 schema:name Biochemistry and Cell Biology
105 rdf:type schema:DefinedTerm
106 sg:person.01021262324.27 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
107 schema:familyName Spatz
108 schema:givenName Joachim P.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021262324.27
110 rdf:type schema:Person
111 sg:person.01204541513.25 schema:affiliation https://www.grid.ac/institutes/grid.7700.0
112 schema:familyName Kemkemer
113 schema:givenName Ralf
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204541513.25
115 rdf:type schema:Person
116 sg:person.01343012452.29 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
117 schema:familyName Kaufmann
118 schema:givenName Dieter
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343012452.29
120 rdf:type schema:Person
121 sg:person.054664240.14 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
122 schema:familyName Gruler
123 schema:givenName Hans
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.054664240.14
125 rdf:type schema:Person
126 sg:pub.10.1007/978-3-642-96807-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000578773
127 https://doi.org/10.1007/978-3-642-96807-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf02738066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008470204
130 https://doi.org/10.1007/bf02738066
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s101890050024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052768027
133 https://doi.org/10.1007/s101890050024
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s101890070023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054521717
136 https://doi.org/10.1007/s101890070023
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/ng0494-331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051749769
139 https://doi.org/10.1038/ng0494-331
140 rdf:type schema:CreativeWork
141 sg:pub.10.1046/j.1523-1747.2000.00882.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047952036
142 https://doi.org/10.1046/j.1523-1747.2000.00882.x
143 rdf:type schema:CreativeWork
144 sg:pub.10.1385/cbb:33:1:33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004376268
145 https://doi.org/10.1385/cbb:33:1:33
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1002/(sici)1097-4636(199908)46:2<212::aid-jbm10>3.0.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029013413
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1002/1097-4636(20000905)51:3<529::aid-jbm30>3.0.co;2-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1008597504
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1002/1098-1136(20010315)33:4<314::aid-glia1030>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1032450454
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/cm.970310106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040953772
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/jez.1400170403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025082492
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1006/bbrc.1997.7097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031814666
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0014-4827(86)90450-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043407875
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0896-6273(93)90324-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1046800924
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s0006-8993(97)00328-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010337211
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/s0142-9612(97)00144-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037589994
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.95.26.15641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053484189
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1086/302809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610369
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1093/hmg/7.8.1261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030759706
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1115/1.2798042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062082508
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1126/science.276.5313.791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556577
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.276.5317.1425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062556863
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1128/mcb.17.2.862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007444613
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1146/annurev.bioeng.3.1.335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002076643
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1163/156856298x00415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053219120
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1515/bchm3.1995.376.2.91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047970253
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
188 schema:name Department of Biophysics, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
189 Department of Human Genetics, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.7700.0 schema:alternateName Heidelberg University
192 schema:name Biophysical Chemistry, Institute for Physical Chemistry, Heidelberg University, Im Neuenheimerfeld 253, Heidelberg, D-69120, Germany
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...