Biopolymer Dynamics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Chris H. Wiggins , Loïc Le Goff

ABSTRACT

Recently, many studies of the effect of rigidity on polymer dynamics have been carried out on biological polymers, such as DNA, actin, or microtubules. In the context of this chapter focused on cell mechanics, we will restrain our discussion to actin polymers. Actin filaments for which the persistence length is of the same order as the contour length (recent measurements converge towards a value around lp~ 15µm for a phalloidin stabilized filament, and around lp~ 10µm for an unstabilized filament) correspond typically to the regime of semi-flexible polymers. The physics of actin filaments as semi-flexible polymers has therefore been intensely studied over the last years. Here the motivation is both to use them as model semi-flexible polymers (taking advantage of their ease of visualization and manipulation), and to set microscopic basis for the understanding of cell mechanics. We will first go through the various techniques that can be used to study these chains. More... »

PAGES

139-150

References to SciGraph publications

Book

TITLE

Function and Regulation of Cellular Systems

ISBN

978-3-0348-9614-6
978-3-0348-7895-1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_14

DOI

http://dx.doi.org/10.1007/978-3-0348-7895-1_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021064848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Macromolecular and Materials Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Department of Applied Physics and Applied Mathematics, Columbia University, 10027, New York, NY, USA", 
            "Center for Computational Biology and Bioinformatics, 1150 St. Nicholas Avenue, 10032, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiggins", 
        "givenName": "Chris H.", 
        "id": "sg:person.010232670657.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232670657.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Physico-Chimie Curie UMR168, 26 rue d\u2019Ulm, 75248 PARIS cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Goff", 
        "givenName": "Lo\u00efc", 
        "id": "sg:person.0647336453.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647336453.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1083/jcb.138.4.771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000400180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.r1330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001634613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.56.r1330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001634613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s100510050145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010371052", 
          "https://doi.org/10.1007/s100510050145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011149725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.5232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011149725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011298835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011298835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.2581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030006424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.2581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030006424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(80)90311-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044281804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.120.4.923", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050730199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/307058a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053227057", 
          "https://doi.org/10.1038/307058a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112076000475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053847048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112076000475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053847048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112076000475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053847048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma00071a009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056175897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma001468p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056179993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma001468p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056179993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp1:1991238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056973695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r1642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.48.r1642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.1106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.258101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.258101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/21/8/012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229430"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Recently, many studies of the effect of rigidity on polymer dynamics have been carried out on biological polymers, such as DNA, actin, or microtubules. In the context of this chapter focused on cell mechanics, we will restrain our discussion to actin polymers. Actin filaments for which the persistence length is of the same order as the contour length (recent measurements converge towards a value around lp~ 15\u00b5m for a phalloidin stabilized filament, and around lp~ 10\u00b5m for an unstabilized filament) correspond typically to the regime of semi-flexible polymers. The physics of actin filaments as semi-flexible polymers has therefore been intensely studied over the last years. Here the motivation is both to use them as model semi-flexible polymers (taking advantage of their ease of visualization and manipulation), and to set microscopic basis for the understanding of cell mechanics. We will first go through the various techniques that can be used to study these chains.", 
    "editor": [
      {
        "familyName": "Deutsch", 
        "givenName": "Andreas", 
        "type": "Person"
      }, 
      {
        "familyName": "Howard", 
        "givenName": "Jonathon", 
        "type": "Person"
      }, 
      {
        "familyName": "Falcke", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Zimmermann", 
        "givenName": "Walter", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-7895-1_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9614-6", 
        "978-3-0348-7895-1"
      ], 
      "name": "Function and Regulation of Cellular Systems", 
      "type": "Book"
    }, 
    "name": "Biopolymer Dynamics", 
    "pagination": "139-150", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021064848"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-7895-1_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "645d4642ab2e3bb5f79ea22e462cdfae6c3049ff2d04fb3a9faf33a79da204b9"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-7895-1_14", 
      "https://app.dimensions.ai/details/publication/pub.1021064848"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46769_00000001.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-7895-1_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7895-1_14'


 

This table displays all metadata directly associated to this object as RDF triples.

146 TRIPLES      23 PREDICATES      45 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-7895-1_14 schema:about anzsrc-for:03
2 anzsrc-for:0303
3 schema:author Nc3e5095e12b949b4bb49c696486323cd
4 schema:citation sg:pub.10.1007/s100510050145
5 sg:pub.10.1038/307058a0
6 https://doi.org/10.1016/0022-2836(80)90311-3
7 https://doi.org/10.1017/s0022112076000475
8 https://doi.org/10.1021/ma00071a009
9 https://doi.org/10.1021/ma001468p
10 https://doi.org/10.1051/jp1:1991238
11 https://doi.org/10.1083/jcb.120.4.923
12 https://doi.org/10.1083/jcb.138.4.771
13 https://doi.org/10.1103/physreve.48.r1642
14 https://doi.org/10.1103/physreve.56.r1330
15 https://doi.org/10.1103/physrevlett.77.2581
16 https://doi.org/10.1103/physrevlett.77.4470
17 https://doi.org/10.1103/physrevlett.79.3286
18 https://doi.org/10.1103/physrevlett.80.1106
19 https://doi.org/10.1103/physrevlett.80.5232
20 https://doi.org/10.1103/physrevlett.89.258101
21 https://doi.org/10.1209/0295-5075/21/8/012
22 schema:datePublished 2004
23 schema:datePublishedReg 2004-01-01
24 schema:description Recently, many studies of the effect of rigidity on polymer dynamics have been carried out on biological polymers, such as DNA, actin, or microtubules. In the context of this chapter focused on cell mechanics, we will restrain our discussion to actin polymers. Actin filaments for which the persistence length is of the same order as the contour length (recent measurements converge towards a value around lp~ 15µm for a phalloidin stabilized filament, and around lp~ 10µm for an unstabilized filament) correspond typically to the regime of semi-flexible polymers. The physics of actin filaments as semi-flexible polymers has therefore been intensely studied over the last years. Here the motivation is both to use them as model semi-flexible polymers (taking advantage of their ease of visualization and manipulation), and to set microscopic basis for the understanding of cell mechanics. We will first go through the various techniques that can be used to study these chains.
25 schema:editor N8c7bebd2e64e4cbcaba1ffae35e1c4e1
26 schema:genre chapter
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf Nf5b32e416ab949eead699b1baa50affc
30 schema:name Biopolymer Dynamics
31 schema:pagination 139-150
32 schema:productId N47d75dc9fd744b48ba41cf1f6342c6ed
33 N687ac30e9d4c4724bc00ff8e5d60cfef
34 Nbd98c0fa34fa4bf0b66ca7ca958f3136
35 schema:publisher N57070885b0f24bc1b48414d98ab89edb
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021064848
37 https://doi.org/10.1007/978-3-0348-7895-1_14
38 schema:sdDatePublished 2019-04-16T09:06
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N1231835d1e5e4ee7831bfa4966b50d68
41 schema:url https://link.springer.com/10.1007%2F978-3-0348-7895-1_14
42 sgo:license sg:explorer/license/
43 sgo:sdDataset chapters
44 rdf:type schema:Chapter
45 N0a752ab0da7f4fcb993f208587219b0f schema:familyName Falcke
46 schema:givenName Martin
47 rdf:type schema:Person
48 N0af9d2d3870b4901ac0ac57a6f4d0216 schema:name Physico-Chimie Curie UMR168, 26 rue d’Ulm, 75248 PARIS cedex 05, France
49 rdf:type schema:Organization
50 N10d7b0e7ff9a4d5db7ef10bbec670d79 schema:familyName Howard
51 schema:givenName Jonathon
52 rdf:type schema:Person
53 N1231835d1e5e4ee7831bfa4966b50d68 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N1538e553cc864a3292ce3c351684c9ba rdf:first N0a752ab0da7f4fcb993f208587219b0f
56 rdf:rest N7fc45da32104467da20f72027bcad10f
57 N47d75dc9fd744b48ba41cf1f6342c6ed schema:name dimensions_id
58 schema:value pub.1021064848
59 rdf:type schema:PropertyValue
60 N57070885b0f24bc1b48414d98ab89edb schema:location Basel
61 schema:name Birkhäuser Basel
62 rdf:type schema:Organisation
63 N5dad6750a70d41569f817a0633f8eba6 rdf:first N10d7b0e7ff9a4d5db7ef10bbec670d79
64 rdf:rest N1538e553cc864a3292ce3c351684c9ba
65 N687ac30e9d4c4724bc00ff8e5d60cfef schema:name readcube_id
66 schema:value 645d4642ab2e3bb5f79ea22e462cdfae6c3049ff2d04fb3a9faf33a79da204b9
67 rdf:type schema:PropertyValue
68 N7d275088a5664f7d8d8509899ede225c rdf:first sg:person.0647336453.14
69 rdf:rest rdf:nil
70 N7fc45da32104467da20f72027bcad10f rdf:first Nb3e5ab88bae4434daacb2e8dc2ea5bc4
71 rdf:rest rdf:nil
72 N8c7bebd2e64e4cbcaba1ffae35e1c4e1 rdf:first Nd1f6ec1a37d844b7ae7a59b2fbbe252b
73 rdf:rest N5dad6750a70d41569f817a0633f8eba6
74 Nb3e5ab88bae4434daacb2e8dc2ea5bc4 schema:familyName Zimmermann
75 schema:givenName Walter
76 rdf:type schema:Person
77 Nbd98c0fa34fa4bf0b66ca7ca958f3136 schema:name doi
78 schema:value 10.1007/978-3-0348-7895-1_14
79 rdf:type schema:PropertyValue
80 Nc3e5095e12b949b4bb49c696486323cd rdf:first sg:person.010232670657.54
81 rdf:rest N7d275088a5664f7d8d8509899ede225c
82 Nd1f6ec1a37d844b7ae7a59b2fbbe252b schema:familyName Deutsch
83 schema:givenName Andreas
84 rdf:type schema:Person
85 Nf5b32e416ab949eead699b1baa50affc schema:isbn 978-3-0348-7895-1
86 978-3-0348-9614-6
87 schema:name Function and Regulation of Cellular Systems
88 rdf:type schema:Book
89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
90 schema:name Chemical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
93 schema:name Macromolecular and Materials Chemistry
94 rdf:type schema:DefinedTerm
95 sg:person.010232670657.54 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
96 schema:familyName Wiggins
97 schema:givenName Chris H.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010232670657.54
99 rdf:type schema:Person
100 sg:person.0647336453.14 schema:affiliation N0af9d2d3870b4901ac0ac57a6f4d0216
101 schema:familyName Le Goff
102 schema:givenName Loïc
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647336453.14
104 rdf:type schema:Person
105 sg:pub.10.1007/s100510050145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010371052
106 https://doi.org/10.1007/s100510050145
107 rdf:type schema:CreativeWork
108 sg:pub.10.1038/307058a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053227057
109 https://doi.org/10.1038/307058a0
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0022-2836(80)90311-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044281804
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1017/s0022112076000475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053847048
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ma00071a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056175897
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/ma001468p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056179993
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1051/jp1:1991238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056973695
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1083/jcb.120.4.923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050730199
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1083/jcb.138.4.771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000400180
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreve.48.r1642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716070
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreve.56.r1330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001634613
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevlett.77.2581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030006424
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.77.4470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814322
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.79.3286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011298835
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.80.1106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816833
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.80.5232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011149725
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.89.258101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825765
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1209/0295-5075/21/8/012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229430
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
144 schema:name Center for Computational Biology and Bioinformatics, 1150 St. Nicholas Avenue, 10032, New York, NY, USA
145 Department of Applied Physics and Applied Mathematics, Columbia University, 10027, New York, NY, USA
146 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...