The Schur Algorithm for Generalized Schur Functions IV: Unitary Realizations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

D. Alpay , T. Ya. Azizov , A. Dijksma , H. Langer , G. Wanjala

ABSTRACT

The generalized Schur transform as defined in [13] (see also [2][6]) is applied to the class A° of all complex-valued functions, which are holomorphic at z = O. Each such function has a coisometric and a unitary realization in some Krein space. We study the effect of this generalized Schur transform to the unitary realization; in [2], [3] we studied similar questions for the coisometric realizations. The main difference with [2], [3] is that a certain one-sidedness is replaced by a two-sidedness, comparable to the difference between the unilateral shift on one-sided sequences and the shift on two-sided sequences. We follow a direct approach in line with [2, 3, 6]. More... »

PAGES

23-45

Book

TITLE

Current Trends in Operator Theory and its Applications

ISBN

978-3-0348-9608-5
978-3-0348-7881-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-7881-4_2

DOI

http://dx.doi.org/10.1007/978-3-0348-7881-4_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016259462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ben-Gurion University of the Negev", 
          "id": "https://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alpay", 
        "givenName": "D.", 
        "id": "sg:person.011517101346.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Voronezh State University", 
          "id": "https://www.grid.ac/institutes/grid.20567.36", 
          "name": [
            "Department of Mathematics, Voronezh State University, 394693, Voronezh, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azizov", 
        "givenName": "T. Ya.", 
        "id": "sg:person.012640546265.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, NL-9700, Groningen, AV, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Wien", 
          "id": "https://www.grid.ac/institutes/grid.5329.d", 
          "name": [
            "Institute of Analysis and Technical Mathematics Vienna, University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langer", 
        "givenName": "H.", 
        "id": "sg:person.07450173411.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 800, NL-9700, Groningen, AV, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wanjala", 
        "givenName": "G.", 
        "id": "sg:person.012754335703.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754335703.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1007624556", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8908-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007624556", 
          "https://doi.org/10.1007/978-3-0348-8908-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8908-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007624556", 
          "https://doi.org/10.1007/978-3-0348-8908-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8606-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010817525", 
          "https://doi.org/10.1007/978-3-0348-8606-2_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8606-2_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010817525", 
          "https://doi.org/10.1007/978-3-0348-8606-2_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00605-002-0528-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034313376", 
          "https://doi.org/10.1007/s00605-002-0528-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-5483-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036362980", 
          "https://doi.org/10.1007/978-3-0348-5483-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8077-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037909250", 
          "https://doi.org/10.1007/978-3-0348-8077-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8077-0_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037909250", 
          "https://doi.org/10.1007/978-3-0348-8077-0_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0072441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041863154", 
          "https://doi.org/10.1007/bfb0072441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043119450", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8632-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043119450", 
          "https://doi.org/10.1007/978-3-0348-8632-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8632-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043119450", 
          "https://doi.org/10.1007/978-3-0348-8632-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(02)00734-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049556885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(02)00734-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049556885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0895479891218922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062881934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5802/aif.78", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073139449"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "The generalized Schur transform as defined in [13] (see also [2][6]) is applied to the class A\u00b0 of all complex-valued functions, which are holomorphic at z = O. Each such function has a coisometric and a unitary realization in some Krein space. We study the effect of this generalized Schur transform to the unitary realization; in [2], [3] we studied similar questions for the coisometric realizations. The main difference with [2], [3] is that a certain one-sidedness is replaced by a two-sidedness, comparable to the difference between the unilateral shift on one-sided sequences and the shift on two-sided sequences. We follow a direct approach in line with [2, 3, 6].", 
    "editor": [
      {
        "familyName": "Ball", 
        "givenName": "Joseph A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Helton", 
        "givenName": "J. William", 
        "type": "Person"
      }, 
      {
        "familyName": "Klaus", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Rodman", 
        "givenName": "Leiba", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-7881-4_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-9608-5", 
        "978-3-0348-7881-4"
      ], 
      "name": "Current Trends in Operator Theory and its Applications", 
      "type": "Book"
    }, 
    "name": "The Schur Algorithm for Generalized Schur Functions IV: Unitary Realizations", 
    "pagination": "23-45", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016259462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-7881-4_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d791cfe962dda29efea08b7a298f29d50c47ded8edd9f8c13f4299ccdddfb43"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-7881-4_2", 
      "https://app.dimensions.ai/details/publication/pub.1016259462"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T09:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46741_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0348-7881-4_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7881-4_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7881-4_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7881-4_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7881-4_2'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      40 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-7881-4_2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na19c4b1b1e704e259ce82be8d669a7b8
4 schema:citation sg:pub.10.1007/978-3-0348-5483-2_5
5 sg:pub.10.1007/978-3-0348-8077-0_2
6 sg:pub.10.1007/978-3-0348-8606-2_3
7 sg:pub.10.1007/978-3-0348-8632-1
8 sg:pub.10.1007/978-3-0348-8908-7
9 sg:pub.10.1007/bfb0072441
10 sg:pub.10.1007/s00605-002-0528-6
11 https://app.dimensions.ai/details/publication/pub.1007624556
12 https://app.dimensions.ai/details/publication/pub.1043119450
13 https://doi.org/10.1002/mana.19770770116
14 https://doi.org/10.1016/s0024-3795(02)00734-6
15 https://doi.org/10.1137/s0895479891218922
16 https://doi.org/10.5802/aif.78
17 schema:datePublished 2004
18 schema:datePublishedReg 2004-01-01
19 schema:description The generalized Schur transform as defined in [13] (see also [2][6]) is applied to the class A° of all complex-valued functions, which are holomorphic at z = O. Each such function has a coisometric and a unitary realization in some Krein space. We study the effect of this generalized Schur transform to the unitary realization; in [2], [3] we studied similar questions for the coisometric realizations. The main difference with [2], [3] is that a certain one-sidedness is replaced by a two-sidedness, comparable to the difference between the unilateral shift on one-sided sequences and the shift on two-sided sequences. We follow a direct approach in line with [2, 3, 6].
20 schema:editor Nd352b6f4c4e2458c8f95df13f8dcb4cd
21 schema:genre chapter
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N425dfba74a414dcea5959cd3c1b1a4a1
25 schema:name The Schur Algorithm for Generalized Schur Functions IV: Unitary Realizations
26 schema:pagination 23-45
27 schema:productId N0cf6a656d0a14cd6a85cea05b03f600e
28 Nc0814b38aee3481fb2d07a3d91029a13
29 Ncc0f058553494ff98a156024c235b804
30 schema:publisher N7a0ee20d046442258bb515f238672604
31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016259462
32 https://doi.org/10.1007/978-3-0348-7881-4_2
33 schema:sdDatePublished 2019-04-16T09:02
34 schema:sdLicense https://scigraph.springernature.com/explorer/license/
35 schema:sdPublisher Nfc23c5b7293e4ffabe1b3ba495f41664
36 schema:url https://link.springer.com/10.1007%2F978-3-0348-7881-4_2
37 sgo:license sg:explorer/license/
38 sgo:sdDataset chapters
39 rdf:type schema:Chapter
40 N0cf6a656d0a14cd6a85cea05b03f600e schema:name readcube_id
41 schema:value 4d791cfe962dda29efea08b7a298f29d50c47ded8edd9f8c13f4299ccdddfb43
42 rdf:type schema:PropertyValue
43 N425dfba74a414dcea5959cd3c1b1a4a1 schema:isbn 978-3-0348-7881-4
44 978-3-0348-9608-5
45 schema:name Current Trends in Operator Theory and its Applications
46 rdf:type schema:Book
47 N5544f4220eca4ad6a3d08b6105b65d41 schema:familyName Rodman
48 schema:givenName Leiba
49 rdf:type schema:Person
50 N569de8536ce54882989322aac7fb69cb rdf:first sg:person.013762723211.39
51 rdf:rest Nb58358599b604c38b3eb67ad1a8dab7f
52 N657fe884d507460a90e1b10108fa7629 rdf:first sg:person.012640546265.41
53 rdf:rest N569de8536ce54882989322aac7fb69cb
54 N72ed72bae51b4bfaa7fbba3d6693135a rdf:first Nb4969c3aba9540ccb220ea95f66ceb74
55 rdf:rest N993dc88a7df441d18d1ee6a15cac6582
56 N7a0ee20d046442258bb515f238672604 schema:location Basel
57 schema:name Birkhäuser Basel
58 rdf:type schema:Organisation
59 N993dc88a7df441d18d1ee6a15cac6582 rdf:first Nbdcc920b1fcf401a909db97ac563fffe
60 rdf:rest Nf1f37e2ad7ad430abb53b77a3375049d
61 Na19c4b1b1e704e259ce82be8d669a7b8 rdf:first sg:person.011517101346.40
62 rdf:rest N657fe884d507460a90e1b10108fa7629
63 Nb4969c3aba9540ccb220ea95f66ceb74 schema:familyName Helton
64 schema:givenName J. William
65 rdf:type schema:Person
66 Nb58358599b604c38b3eb67ad1a8dab7f rdf:first sg:person.07450173411.71
67 rdf:rest Nd706fb26d68845998204d165a2b8c25b
68 Nbdcc920b1fcf401a909db97ac563fffe schema:familyName Klaus
69 schema:givenName Martin
70 rdf:type schema:Person
71 Nc0814b38aee3481fb2d07a3d91029a13 schema:name doi
72 schema:value 10.1007/978-3-0348-7881-4_2
73 rdf:type schema:PropertyValue
74 Ncc0f058553494ff98a156024c235b804 schema:name dimensions_id
75 schema:value pub.1016259462
76 rdf:type schema:PropertyValue
77 Nd352b6f4c4e2458c8f95df13f8dcb4cd rdf:first Nf0b7c953d154481099197aa8449dde27
78 rdf:rest N72ed72bae51b4bfaa7fbba3d6693135a
79 Nd706fb26d68845998204d165a2b8c25b rdf:first sg:person.012754335703.52
80 rdf:rest rdf:nil
81 Nf0b7c953d154481099197aa8449dde27 schema:familyName Ball
82 schema:givenName Joseph A.
83 rdf:type schema:Person
84 Nf1f37e2ad7ad430abb53b77a3375049d rdf:first N5544f4220eca4ad6a3d08b6105b65d41
85 rdf:rest rdf:nil
86 Nfc23c5b7293e4ffabe1b3ba495f41664 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
92 schema:name Pure Mathematics
93 rdf:type schema:DefinedTerm
94 sg:person.011517101346.40 schema:affiliation https://www.grid.ac/institutes/grid.7489.2
95 schema:familyName Alpay
96 schema:givenName D.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011517101346.40
98 rdf:type schema:Person
99 sg:person.012640546265.41 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
100 schema:familyName Azizov
101 schema:givenName T. Ya.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41
103 rdf:type schema:Person
104 sg:person.012754335703.52 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
105 schema:familyName Wanjala
106 schema:givenName G.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012754335703.52
108 rdf:type schema:Person
109 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
110 schema:familyName Dijksma
111 schema:givenName A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
113 rdf:type schema:Person
114 sg:person.07450173411.71 schema:affiliation https://www.grid.ac/institutes/grid.5329.d
115 schema:familyName Langer
116 schema:givenName H.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71
118 rdf:type schema:Person
119 sg:pub.10.1007/978-3-0348-5483-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036362980
120 https://doi.org/10.1007/978-3-0348-5483-2_5
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-0348-8077-0_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037909250
123 https://doi.org/10.1007/978-3-0348-8077-0_2
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/978-3-0348-8606-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010817525
126 https://doi.org/10.1007/978-3-0348-8606-2_3
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/978-3-0348-8632-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043119450
129 https://doi.org/10.1007/978-3-0348-8632-1
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/978-3-0348-8908-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007624556
132 https://doi.org/10.1007/978-3-0348-8908-7
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/bfb0072441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041863154
135 https://doi.org/10.1007/bfb0072441
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s00605-002-0528-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034313376
138 https://doi.org/10.1007/s00605-002-0528-6
139 rdf:type schema:CreativeWork
140 https://app.dimensions.ai/details/publication/pub.1007624556 schema:CreativeWork
141 https://app.dimensions.ai/details/publication/pub.1043119450 schema:CreativeWork
142 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0024-3795(02)00734-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049556885
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/s0895479891218922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881934
147 rdf:type schema:CreativeWork
148 https://doi.org/10.5802/aif.78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073139449
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.20567.36 schema:alternateName Voronezh State University
151 schema:name Department of Mathematics, Voronezh State University, 394693, Voronezh, Russia
152 rdf:type schema:Organization
153 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
154 schema:name Department of Mathematics, University of Groningen, P.O. Box 800, NL-9700, Groningen, AV, Netherlands
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.5329.d schema:alternateName TU Wien
157 schema:name Institute of Analysis and Technical Mathematics Vienna, University of Technology, Wiedner Hauptstrasse 8-10, A-1040, Vienna, Austria
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.7489.2 schema:alternateName Ben-Gurion University of the Negev
160 schema:name Department of Mathematics, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...