Ontology type: schema:Chapter
1990
AUTHORSMichael A. Dritschel , James Rovnyak
ABSTRACTNotions of Julia and defect operators are used as a foundation for a theory of matrix extension and commutant lifting problems for contraction operators on Kreĭn spaces. The account includes a self-contained treatment of key propositions from the theory of Potapov, Ginsburg, Kreĭn, and Shmul’yan on the behavior of a contraction operator on negative subspaces. This theory is extended by an analysis of the behavior of the adjoint of a contraction operator on negative subspaces. Together, these results provide the technical input for the main extension theorems. More... »
PAGES221-305
Extension and Interpolation of Linear Operators and Matrix Functions
ISBN
978-3-7643-2530-5
978-3-0348-7701-5
http://scigraph.springernature.com/pub.10.1007/978-3-0348-7701-5_5
DOIhttp://dx.doi.org/10.1007/978-3-0348-7701-5_5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026233832
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Purdue University",
"id": "https://www.grid.ac/institutes/grid.169077.e",
"name": [
"Department of Mathematics Mathematical Sciences Building, Purdue University, West Lafayette, Indiana\u00a047907, USA"
],
"type": "Organization"
},
"familyName": "Dritschel",
"givenName": "Michael A.",
"id": "sg:person.010707720201.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707720201.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Virginia",
"id": "https://www.grid.ac/institutes/grid.27755.32",
"name": [
"Department of Mathematics Mathematics-Astronomy Building, University of Virginia, Charlottesville, Virginia\u00a022903, USA"
],
"type": "Organization"
},
"familyName": "Rovnyak",
"givenName": "James",
"id": "sg:person.01351714224.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351714224.63"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1017/s0013091500028418",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015900152"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01236657",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025530169",
"https://doi.org/10.1007/bf01236657"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01236657",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025530169",
"https://doi.org/10.1007/bf01236657"
],
"type": "CreativeWork"
}
],
"datePublished": "1990",
"datePublishedReg": "1990-01-01",
"description": "Notions of Julia and defect operators are used as a foundation for a theory of matrix extension and commutant lifting problems for contraction operators on Kre\u012dn spaces. The account includes a self-contained treatment of key propositions from the theory of Potapov, Ginsburg, Kre\u012dn, and Shmul\u2019yan on the behavior of a contraction operator on negative subspaces. This theory is extended by an analysis of the behavior of the adjoint of a contraction operator on negative subspaces. Together, these results provide the technical input for the main extension theorems.",
"editor": [
{
"familyName": "Gohberg",
"givenName": "I.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-0348-7701-5_5",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-7643-2530-5",
"978-3-0348-7701-5"
],
"name": "Extension and Interpolation of Linear Operators and Matrix Functions",
"type": "Book"
},
"name": "Extension Theorems for Contraction Operators on Kre\u012dn Spaces",
"pagination": "221-305",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-0348-7701-5_5"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"7cf9f43619624270b337a5fb67dbd009e581551b6f054c590dff25afc0836720"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026233832"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user Basel",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-0348-7701-5_5",
"https://app.dimensions.ai/details/publication/pub.1026233832"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T18:11",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000259.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-0348-7701-5_5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7701-5_5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7701-5_5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7701-5_5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7701-5_5'
This table displays all metadata directly associated to this object as RDF triples.
82 TRIPLES
23 PREDICATES
29 URIs
20 LITERALS
8 BLANK NODES