Ontology type: schema:Chapter
1986
AUTHORS ABSTRACTRecall ([1], [2], [3]) that Nκ denotes the set of all complex valued functions Q which are meromorphic in the open upper half plane C + and such that the kernel NQ: $${N_Q}\left( {z,\zeta } \right):\left( {Q\left( z \right) - \overline {Q\left( \zeta \right)} } \right)/\left( {z - \overline \zeta } \right)$$ (1.1) for z,ζ ε D Q has κ negative squares (here D Q (⊂C +) denotes the domain of holomorphy of Q). This means that for arbitrary n ε Z and z1,z2,...,zn ε D Q the matrix (NQ(zi,zj)) 1 n has at most κ negative eigenvalues and for at least one choice of n, z1,...,zn it has exactly κ negative eigenvalues. The class No coincides with the Nevanlinna class of all functions which are holomorphic in C + and map C + into C + UR. The following two examples of functions of the class N1 were considered in [2], [4], respectively: $$w\left( z \right):\alpha - z + \int\limits_{ - \infty }^\infty {\left( {{{\left( {t - z} \right)}^{ - 1}} - t{{\left( {1 + {t^2}} \right)}^{ - 1}}} \right)} d{\sigma _O}\left( t \right),v\left( z \right): = \alpha + \left( {1/z} \right) + \int\limits_{ - 8}^\infty {\left( {{{\left( {t - z} \right)}^{ - 1}} - t{{\left( {1 + {t^2}} \right)}^{ - 1}}} \right)} d{\sigma _1}\left( t \right),$$ (1.2) where α ε R and σo, σl are nondecreasing functions on R such that $${\int\limits_{ - \infty }^\infty {\left( {1 + {t^2}} \right)} ^{ - 1}}d{\sigma _j}\left( t \right) More... »
PAGES201-212
Advances in Invariant Subspaces and Other Results of Operator Theory
ISBN
978-3-0348-7700-8
978-3-0348-7698-8
http://scigraph.springernature.com/pub.10.1007/978-3-0348-7698-8_15
DOIhttp://dx.doi.org/10.1007/978-3-0348-7698-8_15
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1008400943
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0702",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Animal Production",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Agricultural and Veterinary Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "TU Dresden",
"id": "https://www.grid.ac/institutes/grid.4488.0",
"name": [
"Sektion Mathematik, Technische Universit\u00e4t Dresden, 8027\u00a0Dresden, DDR"
],
"type": "Organization"
},
"familyName": "Langer",
"givenName": "Heinz",
"id": "sg:person.07450173411.71",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07450173411.71"
],
"type": "Person"
}
],
"datePublished": "1986",
"datePublishedReg": "1986-01-01",
"description": "Recall ([1], [2], [3]) that N\u03ba denotes the set of all complex valued functions Q which are meromorphic in the open upper half plane C + and such that the kernel NQ: $${N_Q}\\left( {z,\\zeta } \\right):\\left( {Q\\left( z \\right) - \\overline {Q\\left( \\zeta \\right)} } \\right)/\\left( {z - \\overline \\zeta } \\right)$$ (1.1) for z,\u03b6 \u03b5 D Q has \u03ba negative squares (here D Q (\u2282C +) denotes the domain of holomorphy of Q). This means that for arbitrary n \u03b5 Z and z1,z2,...,zn \u03b5 D Q the matrix (NQ(zi,zj)) 1 n has at most \u03ba negative eigenvalues and for at least one choice of n, z1,...,zn it has exactly \u03ba negative eigenvalues. The class No coincides with the Nevanlinna class of all functions which are holomorphic in C + and map C + into C + UR. The following two examples of functions of the class N1 were considered in [2], [4], respectively: $$w\\left( z \\right):\\alpha - z + \\int\\limits_{ - \\infty }^\\infty {\\left( {{{\\left( {t - z} \\right)}^{ - 1}} - t{{\\left( {1 + {t^2}} \\right)}^{ - 1}}} \\right)} d{\\sigma _O}\\left( t \\right),v\\left( z \\right): = \\alpha + \\left( {1/z} \\right) + \\int\\limits_{ - 8}^\\infty {\\left( {{{\\left( {t - z} \\right)}^{ - 1}} - t{{\\left( {1 + {t^2}} \\right)}^{ - 1}}} \\right)} d{\\sigma _1}\\left( t \\right),$$ (1.2) where \u03b1 \u03b5 R and \u03c3o, \u03c3l are nondecreasing functions on R such that $${\\int\\limits_{ - \\infty }^\\infty {\\left( {1 + {t^2}} \\right)} ^{ - 1}}d{\\sigma _j}\\left( t \\right)",
"editor": [
{
"familyName": "Douglas",
"givenName": "R. G.",
"type": "Person"
},
{
"familyName": "Pearcy",
"givenName": "C. M.",
"type": "Person"
},
{
"familyName": "Sz.-Nagy",
"givenName": "B.",
"type": "Person"
},
{
"familyName": "Vasilescu",
"givenName": "F.-H.",
"type": "Person"
},
{
"familyName": "Voiculescu",
"givenName": "Dan",
"type": "Person"
},
{
"familyName": "Arsene",
"givenName": "Gr.",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-0348-7698-8_15",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-0348-7700-8",
"978-3-0348-7698-8"
],
"name": "Advances in Invariant Subspaces and Other Results of Operator Theory",
"type": "Book"
},
"name": "A Characterization of Generalized Zeros of Negative Type of Functions of the Class N\u03ba",
"pagination": "201-212",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-0348-7698-8_15"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"2805c83b3d1e3d65543e24c91f7fb878a98ff3104cfda766951f75a7da86aa3c"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1008400943"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user Basel",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-0348-7698-8_15",
"https://app.dimensions.ai/details/publication/pub.1008400943"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-15T14:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000014.jsonl",
"type": "Chapter",
"url": "http://link.springer.com/10.1007/978-3-0348-7698-8_15"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7698-8_15'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7698-8_15'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7698-8_15'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-7698-8_15'
This table displays all metadata directly associated to this object as RDF triples.
90 TRIPLES
22 PREDICATES
27 URIs
20 LITERALS
8 BLANK NODES