Univariate Multiquadric Approximation: Reproduction of Linear Polynomials View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1990

AUTHORS

M. J. D. Powell

ABSTRACT

It is known that multiquadric radial basis function approximations can reproduce low order polynomials when the centres form an infinite regular lattice. We make a start on the interesting question of extending this result in a way that allows the centres to be in less restrictive positions. Specifically, univariate multiquadric approximations are studied when the only conditions on the centres are that they are not bounded above or below. We find that all linear polynomials can be reproduced on IR, which is a simple conclusion if the multiquadrics degenerate to piecewise linear functions. Our method of analysis depends on a Peano kernel formulation of linear combinations of second divided differences, a crucial point being that it is necessary to employ differences in order that certain infinite sums are absolutely convergent. It seems that standard methods cannot be used to identify the linear space that is spanned by the multiquadric functions, partly because it is shown that this space provides uniform convergence to any continuous function on any finite interval of the real line. More... »

PAGES

227-240

Book

TITLE

Multivariate Approximation and Interpolation

ISBN

978-3-0348-5686-7
978-3-0348-5685-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-5685-0_17

DOI

http://dx.doi.org/10.1007/978-3-0348-5685-0_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003645450


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, CB3 9EW\u00a0Cambridge, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "M. J. D.", 
        "id": "sg:person.07731545105.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jb076i008p01905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043237648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/imanum/9.4.567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059689322"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "It is known that multiquadric radial basis function approximations can reproduce low order polynomials when the centres form an infinite regular lattice. We make a start on the interesting question of extending this result in a way that allows the centres to be in less restrictive positions. Specifically, univariate multiquadric approximations are studied when the only conditions on the centres are that they are not bounded above or below. We find that all linear polynomials can be reproduced on IR, which is a simple conclusion if the multiquadrics degenerate to piecewise linear functions. Our method of analysis depends on a Peano kernel formulation of linear combinations of second divided differences, a crucial point being that it is necessary to employ differences in order that certain infinite sums are absolutely convergent. It seems that standard methods cannot be used to identify the linear space that is spanned by the multiquadric functions, partly because it is shown that this space provides uniform convergence to any continuous function on any finite interval of the real line.", 
    "editor": [
      {
        "familyName": "Hau\u00dfmann", 
        "givenName": "W.", 
        "type": "Person"
      }, 
      {
        "familyName": "Jetter", 
        "givenName": "K.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-5685-0_17", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-5686-7", 
        "978-3-0348-5685-0"
      ], 
      "name": "Multivariate Approximation and Interpolation", 
      "type": "Book"
    }, 
    "name": "Univariate Multiquadric Approximation: Reproduction of Linear Polynomials", 
    "pagination": "227-240", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-5685-0_17"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "115da77386304266eb1839449522b760493bd72f0aae4b7e325703e12fe0098d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003645450"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-5685-0_17", 
      "https://app.dimensions.ai/details/publication/pub.1003645450"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T20:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000245.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-5685-0_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-5685-0_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-5685-0_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-5685-0_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-5685-0_17'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-5685-0_17 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N8bf034fb71d347bda55584b0e7f5d110
4 schema:citation https://doi.org/10.1029/jb076i008p01905
5 https://doi.org/10.1093/imanum/9.4.567
6 schema:datePublished 1990
7 schema:datePublishedReg 1990-01-01
8 schema:description It is known that multiquadric radial basis function approximations can reproduce low order polynomials when the centres form an infinite regular lattice. We make a start on the interesting question of extending this result in a way that allows the centres to be in less restrictive positions. Specifically, univariate multiquadric approximations are studied when the only conditions on the centres are that they are not bounded above or below. We find that all linear polynomials can be reproduced on IR, which is a simple conclusion if the multiquadrics degenerate to piecewise linear functions. Our method of analysis depends on a Peano kernel formulation of linear combinations of second divided differences, a crucial point being that it is necessary to employ differences in order that certain infinite sums are absolutely convergent. It seems that standard methods cannot be used to identify the linear space that is spanned by the multiquadric functions, partly because it is shown that this space provides uniform convergence to any continuous function on any finite interval of the real line.
9 schema:editor N5265fcdeff6b4410835de79d9aaddb86
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N03036c88ab774341b13db4921954875f
14 schema:name Univariate Multiquadric Approximation: Reproduction of Linear Polynomials
15 schema:pagination 227-240
16 schema:productId N482ca3abf09d4cf48b2e73419d6c155d
17 Nf061afcef23f4f499f74e912925280aa
18 Nf8242a4fc1414f63b7939629ef0f630c
19 schema:publisher N534f48172c72445ea11536ccf574a4ea
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003645450
21 https://doi.org/10.1007/978-3-0348-5685-0_17
22 schema:sdDatePublished 2019-04-15T20:03
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Ne10800b50d104262b3ff89d7b963ebd7
25 schema:url http://link.springer.com/10.1007/978-3-0348-5685-0_17
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N03036c88ab774341b13db4921954875f schema:isbn 978-3-0348-5685-0
30 978-3-0348-5686-7
31 schema:name Multivariate Approximation and Interpolation
32 rdf:type schema:Book
33 N482ca3abf09d4cf48b2e73419d6c155d schema:name readcube_id
34 schema:value 115da77386304266eb1839449522b760493bd72f0aae4b7e325703e12fe0098d
35 rdf:type schema:PropertyValue
36 N5265fcdeff6b4410835de79d9aaddb86 rdf:first N57142e63ba544780b87b52df7cfdb864
37 rdf:rest Ne87351ba07584157bf25428dac847f9f
38 N534f48172c72445ea11536ccf574a4ea schema:location Basel
39 schema:name Birkhäuser Basel
40 rdf:type schema:Organisation
41 N550d7a299689416c8301d282dc540c0d schema:familyName Jetter
42 schema:givenName K.
43 rdf:type schema:Person
44 N57142e63ba544780b87b52df7cfdb864 schema:familyName Haußmann
45 schema:givenName W.
46 rdf:type schema:Person
47 N8bf034fb71d347bda55584b0e7f5d110 rdf:first sg:person.07731545105.07
48 rdf:rest rdf:nil
49 Ne10800b50d104262b3ff89d7b963ebd7 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Ne87351ba07584157bf25428dac847f9f rdf:first N550d7a299689416c8301d282dc540c0d
52 rdf:rest rdf:nil
53 Nf061afcef23f4f499f74e912925280aa schema:name dimensions_id
54 schema:value pub.1003645450
55 rdf:type schema:PropertyValue
56 Nf8242a4fc1414f63b7939629ef0f630c schema:name doi
57 schema:value 10.1007/978-3-0348-5685-0_17
58 rdf:type schema:PropertyValue
59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
60 schema:name Mathematical Sciences
61 rdf:type schema:DefinedTerm
62 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
63 schema:name Statistics
64 rdf:type schema:DefinedTerm
65 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
66 schema:familyName Powell
67 schema:givenName M. J. D.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
69 rdf:type schema:Person
70 https://doi.org/10.1029/jb076i008p01905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043237648
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1093/imanum/9.4.567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059689322
73 rdf:type schema:CreativeWork
74 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
75 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, CB3 9EW Cambridge, England
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...