Spectral Properties of Positive Operators View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

1984

AUTHORS

Jacobus J. Grobler

ABSTRACT

In answer to a problem posed by A.C. Zaanen we prove the spectral radius theo rem of Ando-Krieger without using any representation methods. The theorem states that a positive and band irreducible abstract kernel operator on a Dedekind complete Banach lattice has a strictly positive spectral radius. As a result the abstract version of the theorems of Jentzsch and Frobenius can be derived without resorting to representation theory. More... »

PAGES

67-72

Book

TITLE

Anniversary Volume on Approximation Theory and Functional Analysis

ISBN

978-3-0348-5434-4
978-3-0348-5432-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-5432-0_6

DOI

http://dx.doi.org/10.1007/978-3-0348-5432-0_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038042822


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and Applied Mathematics, Potchefstroom University for Christian Higher Education, Potchefstroom, South Africa", 
          "id": "http://www.grid.ac/institutes/grid.25881.36", 
          "name": [
            "Department of Mathematics and Applied Mathematics, Potchefstroom University for Christian Higher Education, Potchefstroom, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grobler", 
        "givenName": "Jacobus J.", 
        "id": "sg:person.014326465431.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326465431.95"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1984", 
    "datePublishedReg": "1984-01-01", 
    "description": "In answer to a problem posed by A.C. Zaanen we prove the spectral radius theo rem of Ando-Krieger without using any representation methods. The theorem states that a positive and band irreducible abstract kernel operator on a Dedekind complete Banach lattice has a strictly positive spectral radius. As a result the abstract version of the theorems of Jentzsch and Frobenius can be derived without resorting to representation theory.", 
    "editor": [
      {
        "familyName": "Butzer", 
        "givenName": "P. L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Stens", 
        "givenName": "R. L.", 
        "type": "Person"
      }, 
      {
        "familyName": "Sz.-Nagy", 
        "givenName": "B.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-5432-0_6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-5434-4", 
        "978-3-0348-5432-0"
      ], 
      "name": "Anniversary Volume on Approximation Theory and Functional Analysis", 
      "type": "Book"
    }, 
    "keywords": [
      "Dedekind complete Banach lattice", 
      "positive spectral radius", 
      "representation theory", 
      "positive operators", 
      "kernel operator", 
      "spectral radius", 
      "abstract version", 
      "Banach lattices", 
      "complete Banach lattice", 
      "theorem", 
      "operators", 
      "representation method", 
      "spectral properties", 
      "Frobenius", 
      "Zaanen", 
      "Jentzsch", 
      "problem", 
      "theory", 
      "version", 
      "lattice", 
      "answers", 
      "properties", 
      "results", 
      "radius", 
      "REM", 
      "method", 
      "A.C. Zaanen", 
      "spectral radius theo rem", 
      "radius theo rem", 
      "theo rem", 
      "Ando-Krieger", 
      "band irreducible abstract kernel operator", 
      "irreducible abstract kernel operator", 
      "abstract kernel operator", 
      "theorems of Jentzsch"
    ], 
    "name": "Spectral Properties of Positive Operators", 
    "pagination": "67-72", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038042822"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-5432-0_6"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-5432-0_6", 
      "https://app.dimensions.ai/details/publication/pub.1038042822"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_294.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-0348-5432-0_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-5432-0_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-5432-0_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-5432-0_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-5432-0_6'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      23 PREDICATES      61 URIs      54 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-5432-0_6 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5646f534d01c4310a49b48d0475f01b9
4 schema:datePublished 1984
5 schema:datePublishedReg 1984-01-01
6 schema:description In answer to a problem posed by A.C. Zaanen we prove the spectral radius theo rem of Ando-Krieger without using any representation methods. The theorem states that a positive and band irreducible abstract kernel operator on a Dedekind complete Banach lattice has a strictly positive spectral radius. As a result the abstract version of the theorems of Jentzsch and Frobenius can be derived without resorting to representation theory.
7 schema:editor Ne8352d3069b94068a7caa04e21a5d2f2
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N4640c2e5f5b941499ecc4240bcabfa67
12 schema:keywords A.C. Zaanen
13 Ando-Krieger
14 Banach lattices
15 Dedekind complete Banach lattice
16 Frobenius
17 Jentzsch
18 REM
19 Zaanen
20 abstract kernel operator
21 abstract version
22 answers
23 band irreducible abstract kernel operator
24 complete Banach lattice
25 irreducible abstract kernel operator
26 kernel operator
27 lattice
28 method
29 operators
30 positive operators
31 positive spectral radius
32 problem
33 properties
34 radius
35 radius theo rem
36 representation method
37 representation theory
38 results
39 spectral properties
40 spectral radius
41 spectral radius theo rem
42 theo rem
43 theorem
44 theorems of Jentzsch
45 theory
46 version
47 schema:name Spectral Properties of Positive Operators
48 schema:pagination 67-72
49 schema:productId N20ff6e9b0f7647c794bdd2aae205b32e
50 N34674dadce5b4a84909f43932fdd1b44
51 schema:publisher N3dd9ac1d75a54196896b70e0b76faa49
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038042822
53 https://doi.org/10.1007/978-3-0348-5432-0_6
54 schema:sdDatePublished 2022-01-01T19:16
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N53b7233ed34b4eefbe7562652ba93b5e
57 schema:url https://doi.org/10.1007/978-3-0348-5432-0_6
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N20ff6e9b0f7647c794bdd2aae205b32e schema:name dimensions_id
62 schema:value pub.1038042822
63 rdf:type schema:PropertyValue
64 N319c154f5b654a60ac770fe870fd6aab rdf:first Nead70d100ee84aa79a5ed197ab5f028d
65 rdf:rest N74349ccb7f234c0289020b22b2c11a91
66 N34674dadce5b4a84909f43932fdd1b44 schema:name doi
67 schema:value 10.1007/978-3-0348-5432-0_6
68 rdf:type schema:PropertyValue
69 N3dd9ac1d75a54196896b70e0b76faa49 schema:name Springer Nature
70 rdf:type schema:Organisation
71 N4640c2e5f5b941499ecc4240bcabfa67 schema:isbn 978-3-0348-5432-0
72 978-3-0348-5434-4
73 schema:name Anniversary Volume on Approximation Theory and Functional Analysis
74 rdf:type schema:Book
75 N53b7233ed34b4eefbe7562652ba93b5e schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N5646f534d01c4310a49b48d0475f01b9 rdf:first sg:person.014326465431.95
78 rdf:rest rdf:nil
79 N74349ccb7f234c0289020b22b2c11a91 rdf:first N9c47a757d3204575983bea8ba1ff2e33
80 rdf:rest rdf:nil
81 N8a181dc0554742638a729334babe4533 schema:familyName Butzer
82 schema:givenName P. L.
83 rdf:type schema:Person
84 N9c47a757d3204575983bea8ba1ff2e33 schema:familyName Sz.-Nagy
85 schema:givenName B.
86 rdf:type schema:Person
87 Ne8352d3069b94068a7caa04e21a5d2f2 rdf:first N8a181dc0554742638a729334babe4533
88 rdf:rest N319c154f5b654a60ac770fe870fd6aab
89 Nead70d100ee84aa79a5ed197ab5f028d schema:familyName Stens
90 schema:givenName R. L.
91 rdf:type schema:Person
92 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
93 schema:name Mathematical Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
96 schema:name Pure Mathematics
97 rdf:type schema:DefinedTerm
98 sg:person.014326465431.95 schema:affiliation grid-institutes:grid.25881.36
99 schema:familyName Grobler
100 schema:givenName Jacobus J.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014326465431.95
102 rdf:type schema:Person
103 grid-institutes:grid.25881.36 schema:alternateName Department of Mathematics and Applied Mathematics, Potchefstroom University for Christian Higher Education, Potchefstroom, South Africa
104 schema:name Department of Mathematics and Applied Mathematics, Potchefstroom University for Christian Higher Education, Potchefstroom, South Africa
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...