On a Schur-type Algorithm for Sequences of Complex $${p} \times{q} $$ -matrices and its Interrelations with the Canonical Hankel Parametrization View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Bernd Fritzsche , Bernd Kirstein , Conrad Mädler , Tilo Schwarz

ABSTRACT

Building on work started in [12], we further examine the structure of the set \( \mathcal{H}^{\geq}_{q,2n} \)of all Hankel non-negative definite sequences \( {(s_j)}^{2n}_{j=0} \)of complex \( q \times q \)-matrices. We furthermore examine the important subclasses \( {\mathcal{H}^{{\geq},e}_{q,2n}} \) and \( \mathcal{H}^{\geq}_{q,2n} \), consisting of all Hankel non-negative definite and Hankel positive definite extendable sequences, respectively. These sequence-classes appear naturally when discussing matrix versions of the truncated Hamburger moment problem. In [12] and [15] a canonical Hankel parametrization \( [{(C_k)^n_{k=1}},{(D_k)^n_{k=0}}], \)consisting of two sequences of complex matrices, was associated with every sequence \( {(s_j)}^{2n}_{j=0} \) of complex \( p \times q \)-matrices. There is a bijective correspondence between the sequence and its canonical Hankel parametrization Chen and Hu [9] constructed a Schur-type algorithm for a special class of holomorphic matrix-valued functions in the upper half-plane so that matrix versions of the truncated Hamburger moment problem might be dealt with in the degenerate and non-degenerate cases, simultaneously. A closer analysis of their algorithm showed that it implicitly contains an interesting procedure for sequences belonging \( {\mathcal{H}^{{\geq},e}_{q,2n}} \)This procedure serves as the focus of our work here, although we have chosen a slightly different and more general setting. Our approach is based on a suitable extension of the concept of reciprocal sequences, which are used in power series inversions. We will show that, given n as a positive integer, this concept rests on a particular method for producing sequences belonging to \( {\mathcal{H}^{{\geq}}_{q,2n}} \), starting from a sequence \( {{(s_j)}^{2n}_{j=0}}\; \in \;{{\mathcal{H}^{{\geq}}_{q,2n}}} \).Using this, we develop a Schur-type algorithm for finite sequences of complex \( p \times q \)-matrices. We show that the Schur-type algorithm preserves specific subclasses of \( {\mathcal{H}^{{\geq}}_{q,2n}} \), for example: \( {\mathcal{H}^{{\geq},e}_{q,2n}} \) \( {\mathcal{H}^{{\geq}}_{q,2n}} \). One of our main results (see Theorem 9.15) expresses that, given a sequence \( {{(s_j)}^{2n}_{j=0}}\; \in \;{{\mathcal{H}^{{\geq},e}_{q,2n}}} \), the Schur-type algorithm produces, exactly, its canonical Hankel parametrization. This leads us to a deeper understanding of the canonical Hankel parametrization. More... »

PAGES

117-192

Book

TITLE

Interpolation, Schur Functions and Moment Problems II

ISBN

978-3-0348-0427-1
978-3-0348-0428-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-0428-8_3

DOI

http://dx.doi.org/10.1007/978-3-0348-0428-8_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035254759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Mathematisches Institut, Universit\u00e4t Leipzig, Augustusplatz 10/11, D-04109\u00a0Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fritzsche", 
        "givenName": "Bernd", 
        "id": "sg:person.013240776135.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240776135.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mathematisches Institut, Universit\u00e4t Leipzig, Augustusplatz 10/11, D-04109\u00a0Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirstein", 
        "givenName": "Bernd", 
        "id": "sg:person.015616021277.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015616021277.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mathematisches Institut, Universit\u00e4t Leipzig, Augustusplatz 10/11, D-04109\u00a0Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00e4dler", 
        "givenName": "Conrad", 
        "id": "sg:person.016212173467.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212173467.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mathematisches Institut, Universit\u00e4t Leipzig, Augustusplatz 10/11, D-04109\u00a0Leipzig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwarz", 
        "givenName": "Tilo", 
        "id": "sg:person.012142346131.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142346131.23"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Building on work started in [12], we further examine the structure of the set \\( \\mathcal{H}^{\\geq}_{q,2n} \\)of all Hankel non-negative definite sequences \\( {(s_j)}^{2n}_{j=0} \\)of complex \\( q \\times q \\)-matrices. We furthermore examine the important subclasses \\( {\\mathcal{H}^{{\\geq},e}_{q,2n}} \\) and \\( \\mathcal{H}^{\\geq}_{q,2n} \\), consisting of all Hankel non-negative definite and Hankel positive definite extendable sequences, respectively. These sequence-classes appear naturally when discussing matrix versions of the truncated Hamburger moment problem. In [12] and [15] a canonical Hankel parametrization \\( [{(C_k)^n_{k=1}},{(D_k)^n_{k=0}}], \\)consisting of two sequences of complex matrices, was associated with every sequence \\( {(s_j)}^{2n}_{j=0} \\) of complex \\( p \\times q \\)-matrices. There is a bijective correspondence between the sequence and its canonical Hankel parametrization Chen and Hu [9] constructed a Schur-type algorithm for a special class of holomorphic matrix-valued functions in the upper half-plane so that matrix versions of the truncated Hamburger moment problem might be dealt with in the degenerate and non-degenerate cases, simultaneously. A closer analysis of their algorithm showed that it implicitly contains an interesting procedure for sequences belonging \\( {\\mathcal{H}^{{\\geq},e}_{q,2n}} \\)This procedure serves as the focus of our work here, although we have chosen a slightly different and more general setting. Our approach is based on a suitable extension of the concept of reciprocal sequences, which are used in power series inversions. We will show that, given n as a positive integer, this concept rests on a particular method for producing sequences belonging to \\( {\\mathcal{H}^{{\\geq}}_{q,2n}} \\), starting from a sequence \\( {{(s_j)}^{2n}_{j=0}}\\; \\in \\;{{\\mathcal{H}^{{\\geq}}_{q,2n}}} \\).Using this, we develop a Schur-type algorithm for finite sequences of complex \\( p \\times q \\)-matrices. We show that the Schur-type algorithm preserves specific subclasses of \\( {\\mathcal{H}^{{\\geq}}_{q,2n}} \\), for example: \\( {\\mathcal{H}^{{\\geq},e}_{q,2n}} \\) \\( {\\mathcal{H}^{{\\geq}}_{q,2n}} \\). One of our main results (see Theorem 9.15) expresses that, given a sequence \\( {{(s_j)}^{2n}_{j=0}}\\; \\in \\;{{\\mathcal{H}^{{\\geq},e}_{q,2n}}} \\), the Schur-type algorithm produces, exactly, its canonical Hankel parametrization. This leads us to a deeper understanding of the canonical Hankel parametrization.", 
    "editor": [
      {
        "familyName": "Alpay", 
        "givenName": "Daniel", 
        "type": "Person"
      }, 
      {
        "familyName": "Kirstein", 
        "givenName": "Bernd", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-0428-8_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-0427-1", 
        "978-3-0348-0428-8"
      ], 
      "name": "Interpolation, Schur Functions and Moment Problems II", 
      "type": "Book"
    }, 
    "name": "On a Schur-type Algorithm for Sequences of Complex $${p} \\times{q} $$ -matrices and its Interrelations with the Canonical Hankel Parametrization", 
    "pagination": "117-192", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-0428-8_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7eff3354ab81d45c96e7ea9b7f2192f7b7589529b9114f29b8f3031eb36ae29"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035254759"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Springer Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-0428-8_3", 
      "https://app.dimensions.ai/details/publication/pub.1035254759"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000060.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-0428-8_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0428-8_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0428-8_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0428-8_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0428-8_3'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-0428-8_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nc8d187b5c2af4120b37bfc5a1492d882
4 schema:datePublished 2012
5 schema:datePublishedReg 2012-01-01
6 schema:description Building on work started in [12], we further examine the structure of the set \( \mathcal{H}^{\geq}_{q,2n} \)of all Hankel non-negative definite sequences \( {(s_j)}^{2n}_{j=0} \)of complex \( q \times q \)-matrices. We furthermore examine the important subclasses \( {\mathcal{H}^{{\geq},e}_{q,2n}} \) and \( \mathcal{H}^{\geq}_{q,2n} \), consisting of all Hankel non-negative definite and Hankel positive definite extendable sequences, respectively. These sequence-classes appear naturally when discussing matrix versions of the truncated Hamburger moment problem. In [12] and [15] a canonical Hankel parametrization \( [{(C_k)^n_{k=1}},{(D_k)^n_{k=0}}], \)consisting of two sequences of complex matrices, was associated with every sequence \( {(s_j)}^{2n}_{j=0} \) of complex \( p \times q \)-matrices. There is a bijective correspondence between the sequence and its canonical Hankel parametrization Chen and Hu [9] constructed a Schur-type algorithm for a special class of holomorphic matrix-valued functions in the upper half-plane so that matrix versions of the truncated Hamburger moment problem might be dealt with in the degenerate and non-degenerate cases, simultaneously. A closer analysis of their algorithm showed that it implicitly contains an interesting procedure for sequences belonging \( {\mathcal{H}^{{\geq},e}_{q,2n}} \)This procedure serves as the focus of our work here, although we have chosen a slightly different and more general setting. Our approach is based on a suitable extension of the concept of reciprocal sequences, which are used in power series inversions. We will show that, given n as a positive integer, this concept rests on a particular method for producing sequences belonging to \( {\mathcal{H}^{{\geq}}_{q,2n}} \), starting from a sequence \( {{(s_j)}^{2n}_{j=0}}\; \in \;{{\mathcal{H}^{{\geq}}_{q,2n}}} \).Using this, we develop a Schur-type algorithm for finite sequences of complex \( p \times q \)-matrices. We show that the Schur-type algorithm preserves specific subclasses of \( {\mathcal{H}^{{\geq}}_{q,2n}} \), for example: \( {\mathcal{H}^{{\geq},e}_{q,2n}} \) \( {\mathcal{H}^{{\geq}}_{q,2n}} \). One of our main results (see Theorem 9.15) expresses that, given a sequence \( {{(s_j)}^{2n}_{j=0}}\; \in \;{{\mathcal{H}^{{\geq},e}_{q,2n}}} \), the Schur-type algorithm produces, exactly, its canonical Hankel parametrization. This leads us to a deeper understanding of the canonical Hankel parametrization.
7 schema:editor N8075120e39d24f4b8ef5b9e99bdac15e
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N3555305a6fd149438feb9bd764e29798
12 schema:name On a Schur-type Algorithm for Sequences of Complex $${p} \times{q} $$ -matrices and its Interrelations with the Canonical Hankel Parametrization
13 schema:pagination 117-192
14 schema:productId N1465f0c76a1f4be485fb11eaeefa9143
15 N3e911150441142edb827d2c79e8d45b1
16 Nf74f537e41de42f29b62b800e2451d0f
17 schema:publisher N010913755bc84426941af0583f9f4511
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035254759
19 https://doi.org/10.1007/978-3-0348-0428-8_3
20 schema:sdDatePublished 2019-04-15T11:22
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N5248d97afc574dee974d902531e60732
23 schema:url http://link.springer.com/10.1007/978-3-0348-0428-8_3
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N010913755bc84426941af0583f9f4511 schema:location Basel
28 schema:name Springer Basel
29 rdf:type schema:Organisation
30 N1465f0c76a1f4be485fb11eaeefa9143 schema:name dimensions_id
31 schema:value pub.1035254759
32 rdf:type schema:PropertyValue
33 N206193da55e94b0ea5c4b84e7e747df8 schema:name Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany
34 rdf:type schema:Organization
35 N23df7c2c460040d6bb22b88112d16968 schema:familyName Kirstein
36 schema:givenName Bernd
37 rdf:type schema:Person
38 N27f8101af5ab45cd9df69b17cd4c1e61 rdf:first sg:person.012142346131.23
39 rdf:rest rdf:nil
40 N342cf4cfe309412db1ffd7e12c5f97ea schema:familyName Alpay
41 schema:givenName Daniel
42 rdf:type schema:Person
43 N3555305a6fd149438feb9bd764e29798 schema:isbn 978-3-0348-0427-1
44 978-3-0348-0428-8
45 schema:name Interpolation, Schur Functions and Moment Problems II
46 rdf:type schema:Book
47 N3e911150441142edb827d2c79e8d45b1 schema:name readcube_id
48 schema:value a7eff3354ab81d45c96e7ea9b7f2192f7b7589529b9114f29b8f3031eb36ae29
49 rdf:type schema:PropertyValue
50 N4d5aadbed7f640f0805e65498a72a1e6 schema:name Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany
51 rdf:type schema:Organization
52 N5248d97afc574dee974d902531e60732 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N6a268336fb714f66844879bef7f7ccd2 rdf:first sg:person.015616021277.54
55 rdf:rest N85e1509bf22e4e58ba02696d2d87126a
56 N8075120e39d24f4b8ef5b9e99bdac15e rdf:first N342cf4cfe309412db1ffd7e12c5f97ea
57 rdf:rest Naae1fd297f334ce5b8772c9192853722
58 N85e1509bf22e4e58ba02696d2d87126a rdf:first sg:person.016212173467.50
59 rdf:rest N27f8101af5ab45cd9df69b17cd4c1e61
60 N9db7cb8b12f248d29b9e0d88a24e2394 schema:name Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany
61 rdf:type schema:Organization
62 Naae1fd297f334ce5b8772c9192853722 rdf:first N23df7c2c460040d6bb22b88112d16968
63 rdf:rest rdf:nil
64 Nc4bb2d60e08a4b289d2efac332b5f9c8 schema:name Mathematisches Institut, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany
65 rdf:type schema:Organization
66 Nc8d187b5c2af4120b37bfc5a1492d882 rdf:first sg:person.013240776135.23
67 rdf:rest N6a268336fb714f66844879bef7f7ccd2
68 Nf74f537e41de42f29b62b800e2451d0f schema:name doi
69 schema:value 10.1007/978-3-0348-0428-8_3
70 rdf:type schema:PropertyValue
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
75 schema:name Pure Mathematics
76 rdf:type schema:DefinedTerm
77 sg:person.012142346131.23 schema:affiliation Nc4bb2d60e08a4b289d2efac332b5f9c8
78 schema:familyName Schwarz
79 schema:givenName Tilo
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012142346131.23
81 rdf:type schema:Person
82 sg:person.013240776135.23 schema:affiliation N9db7cb8b12f248d29b9e0d88a24e2394
83 schema:familyName Fritzsche
84 schema:givenName Bernd
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013240776135.23
86 rdf:type schema:Person
87 sg:person.015616021277.54 schema:affiliation N206193da55e94b0ea5c4b84e7e747df8
88 schema:familyName Kirstein
89 schema:givenName Bernd
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015616021277.54
91 rdf:type schema:Person
92 sg:person.016212173467.50 schema:affiliation N4d5aadbed7f640f0805e65498a72a1e6
93 schema:familyName Mädler
94 schema:givenName Conrad
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016212173467.50
96 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...