From the Tamari Lattice to Cambrian Lattices and Beyond View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2012

AUTHORS

Nathan Reading

ABSTRACT

We trace the path from the Tamari lattice, via lattice congruences of the weak order, to the definition of Cambrian lattices in the context of finite Coxeter groups, and onward to the construction of Cambrian fans. We then present sortable elements, the key combinatorial tool for studying Cambrian lattices and fans. The chapter concludes with a brief description of the applications of Cambrian lattices and sortable elements to Coxeter-Catalan combinatorics and to cluster algebras. More... »

PAGES

293-322

Book

TITLE

Associahedra, Tamari Lattices and Related Structures

ISBN

978-3-0348-0404-2
978-3-0348-0405-9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-0405-9_15

DOI

http://dx.doi.org/10.1007/978-3-0348-0405-9_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042747667


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North Carolina State University", 
          "id": "https://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Mathematics, North Carolina State University, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reading", 
        "givenName": "Nathan", 
        "id": "sg:person.016705726413.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705726413.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1112/s0010437x09004023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002440891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x09004023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002440891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/aima.1998.1759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002598766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11083-005-4803-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007165447", 
          "https://doi.org/10.1007/s11083-005-4803-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11083-005-4803-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007165447", 
          "https://doi.org/10.1007/s11083-005-4803-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11083-005-4803-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007165447", 
          "https://doi.org/10.1007/s11083-005-4803-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10801-010-0255-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009335356", 
          "https://doi.org/10.1007/s10801-010-0255-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10801-010-0255-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009335356", 
          "https://doi.org/10.1007/s10801-010-0255-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/aima.1995.1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010571749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-07-04319-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013511489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-008-9025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013797739", 
          "https://doi.org/10.1007/s00031-008-9025-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00031-008-9025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013797739", 
          "https://doi.org/10.1007/s00031-008-9025-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalgebra.2011.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017911713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00012-003-1834-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019776985", 
          "https://doi.org/10.1007/s00012-003-1834-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejc.2011.11.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020237472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015287106470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023579306", 
          "https://doi.org/10.1023/a:1015287106470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-07-04282-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024772585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015064508594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026105467", 
          "https://doi.org/10.1023/a:1015064508594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1015064508594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026105467", 
          "https://doi.org/10.1023/a:1015064508594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2010.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038289974"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aim.2005.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038611128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcta.2011.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038900903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0010437x06002521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-365x(72)90041-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046245091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0894-0347-01-00385-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047819331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-003-0302-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048643395", 
          "https://doi.org/10.1007/s00222-003-0302-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00222-003-0302-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048643395", 
          "https://doi.org/10.1007/s00222-003-0302-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00012-007-2009-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049469853", 
          "https://doi.org/10.1007/s00012-007-2009-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-2010-05050-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059335206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1112/s0025579300007440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062055877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4007/annals.2003.158.977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071866814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4153/cmb-2002-054-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072272449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/jems/155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072317732"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "We trace the path from the Tamari lattice, via lattice congruences of the weak order, to the definition of Cambrian lattices in the context of finite Coxeter groups, and onward to the construction of Cambrian fans. We then present sortable elements, the key combinatorial tool for studying Cambrian lattices and fans. The chapter concludes with a brief description of the applications of Cambrian lattices and sortable elements to Coxeter-Catalan combinatorics and to cluster algebras.", 
    "editor": [
      {
        "familyName": "M\u00fcller-Hoissen", 
        "givenName": "Folkert", 
        "type": "Person"
      }, 
      {
        "familyName": "Pallo", 
        "givenName": "Jean Marcel", 
        "type": "Person"
      }, 
      {
        "familyName": "Stasheff", 
        "givenName": "Jim", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-0405-9_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-0404-2", 
        "978-3-0348-0405-9"
      ], 
      "name": "Associahedra, Tamari Lattices and Related Structures", 
      "type": "Book"
    }, 
    "name": "From the Tamari Lattice to Cambrian Lattices and Beyond", 
    "pagination": "293-322", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-0405-9_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cba00f88f8051131ff3c3ab02b7453f15d94609ed31844ec584f6a626fb7698b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042747667"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Springer Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-0405-9_15", 
      "https://app.dimensions.ai/details/publication/pub.1042747667"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000269.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-0405-9_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0405-9_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0405-9_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0405-9_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0405-9_15'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      23 PREDICATES      53 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-0405-9_15 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9807a3a8d35b468b865ef99f2462aa65
4 schema:citation sg:pub.10.1007/s00012-003-1834-0
5 sg:pub.10.1007/s00012-007-2009-1
6 sg:pub.10.1007/s00031-008-9025-x
7 sg:pub.10.1007/s00222-003-0302-y
8 sg:pub.10.1007/s10801-010-0255-3
9 sg:pub.10.1007/s11083-005-4803-8
10 sg:pub.10.1023/a:1015064508594
11 sg:pub.10.1023/a:1015287106470
12 https://doi.org/10.1006/aima.1995.1032
13 https://doi.org/10.1006/aima.1998.1759
14 https://doi.org/10.1016/0012-365x(72)90041-6
15 https://doi.org/10.1016/j.aim.2005.07.010
16 https://doi.org/10.1016/j.aim.2010.07.005
17 https://doi.org/10.1016/j.ejc.2011.11.004
18 https://doi.org/10.1016/j.jalgebra.2011.11.009
19 https://doi.org/10.1016/j.jcta.2011.09.006
20 https://doi.org/10.1090/s0002-9947-07-04282-1
21 https://doi.org/10.1090/s0002-9947-07-04319-x
22 https://doi.org/10.1090/s0002-9947-2010-05050-0
23 https://doi.org/10.1090/s0894-0347-01-00385-x
24 https://doi.org/10.1112/s0010437x06002521
25 https://doi.org/10.1112/s0010437x09004023
26 https://doi.org/10.1112/s0025579300007440
27 https://doi.org/10.4007/annals.2003.158.977
28 https://doi.org/10.4153/cmb-2002-054-1
29 https://doi.org/10.4171/jems/155
30 schema:datePublished 2012
31 schema:datePublishedReg 2012-01-01
32 schema:description We trace the path from the Tamari lattice, via lattice congruences of the weak order, to the definition of Cambrian lattices in the context of finite Coxeter groups, and onward to the construction of Cambrian fans. We then present sortable elements, the key combinatorial tool for studying Cambrian lattices and fans. The chapter concludes with a brief description of the applications of Cambrian lattices and sortable elements to Coxeter-Catalan combinatorics and to cluster algebras.
33 schema:editor Nfffb7640e3d04a10a8c5be23570c5506
34 schema:genre chapter
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf Ncce5ca1764a240e2a79b686d63d233c1
38 schema:name From the Tamari Lattice to Cambrian Lattices and Beyond
39 schema:pagination 293-322
40 schema:productId N2abba8fde79c476caeff905ccc741a01
41 N9714375428164844ad224d593ea92f2e
42 Nbb33345f118d4f438af1e7fdb0f60fd4
43 schema:publisher N21133637f4674ff18d8c637ba7efc2b8
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042747667
45 https://doi.org/10.1007/978-3-0348-0405-9_15
46 schema:sdDatePublished 2019-04-15T18:13
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nba9fcc725f7e414c9221bd05b23da099
49 schema:url http://link.springer.com/10.1007/978-3-0348-0405-9_15
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N19d56165c96a4718911880df62af6e03 rdf:first Nd1d5605805724af8bf32a15aeb5a971c
54 rdf:rest rdf:nil
55 N21133637f4674ff18d8c637ba7efc2b8 schema:location Basel
56 schema:name Springer Basel
57 rdf:type schema:Organisation
58 N2abba8fde79c476caeff905ccc741a01 schema:name readcube_id
59 schema:value cba00f88f8051131ff3c3ab02b7453f15d94609ed31844ec584f6a626fb7698b
60 rdf:type schema:PropertyValue
61 N3de20994eaa4419fa50c062d5fd9babb rdf:first Nc49e85c7cd264547a95521a08f8a6ce8
62 rdf:rest N19d56165c96a4718911880df62af6e03
63 N9714375428164844ad224d593ea92f2e schema:name dimensions_id
64 schema:value pub.1042747667
65 rdf:type schema:PropertyValue
66 N9807a3a8d35b468b865ef99f2462aa65 rdf:first sg:person.016705726413.24
67 rdf:rest rdf:nil
68 Nba9fcc725f7e414c9221bd05b23da099 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nbb33345f118d4f438af1e7fdb0f60fd4 schema:name doi
71 schema:value 10.1007/978-3-0348-0405-9_15
72 rdf:type schema:PropertyValue
73 Nc49e85c7cd264547a95521a08f8a6ce8 schema:familyName Pallo
74 schema:givenName Jean Marcel
75 rdf:type schema:Person
76 Ncce5ca1764a240e2a79b686d63d233c1 schema:isbn 978-3-0348-0404-2
77 978-3-0348-0405-9
78 schema:name Associahedra, Tamari Lattices and Related Structures
79 rdf:type schema:Book
80 Nd1d5605805724af8bf32a15aeb5a971c schema:familyName Stasheff
81 schema:givenName Jim
82 rdf:type schema:Person
83 Ne7fc6143cd6441178a8593b74c53aab6 schema:familyName Müller-Hoissen
84 schema:givenName Folkert
85 rdf:type schema:Person
86 Nfffb7640e3d04a10a8c5be23570c5506 rdf:first Ne7fc6143cd6441178a8593b74c53aab6
87 rdf:rest N3de20994eaa4419fa50c062d5fd9babb
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
92 schema:name Pure Mathematics
93 rdf:type schema:DefinedTerm
94 sg:person.016705726413.24 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
95 schema:familyName Reading
96 schema:givenName Nathan
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705726413.24
98 rdf:type schema:Person
99 sg:pub.10.1007/s00012-003-1834-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019776985
100 https://doi.org/10.1007/s00012-003-1834-0
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s00012-007-2009-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049469853
103 https://doi.org/10.1007/s00012-007-2009-1
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00031-008-9025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013797739
106 https://doi.org/10.1007/s00031-008-9025-x
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00222-003-0302-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1048643395
109 https://doi.org/10.1007/s00222-003-0302-y
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s10801-010-0255-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009335356
112 https://doi.org/10.1007/s10801-010-0255-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s11083-005-4803-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007165447
115 https://doi.org/10.1007/s11083-005-4803-8
116 rdf:type schema:CreativeWork
117 sg:pub.10.1023/a:1015064508594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026105467
118 https://doi.org/10.1023/a:1015064508594
119 rdf:type schema:CreativeWork
120 sg:pub.10.1023/a:1015287106470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023579306
121 https://doi.org/10.1023/a:1015287106470
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1006/aima.1995.1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010571749
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1006/aima.1998.1759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002598766
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0012-365x(72)90041-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046245091
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.aim.2005.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038611128
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.aim.2010.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038289974
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.ejc.2011.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020237472
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jalgebra.2011.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017911713
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jcta.2011.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038900903
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1090/s0002-9947-07-04282-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024772585
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1090/s0002-9947-07-04319-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013511489
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1090/s0002-9947-2010-05050-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059335206
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1090/s0894-0347-01-00385-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047819331
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1112/s0010437x06002521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041918883
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1112/s0010437x09004023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002440891
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1112/s0025579300007440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062055877
152 rdf:type schema:CreativeWork
153 https://doi.org/10.4007/annals.2003.158.977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071866814
154 rdf:type schema:CreativeWork
155 https://doi.org/10.4153/cmb-2002-054-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072272449
156 rdf:type schema:CreativeWork
157 https://doi.org/10.4171/jems/155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072317732
158 rdf:type schema:CreativeWork
159 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
160 schema:name Department of Mathematics, North Carolina State University, Raleigh, NC, USA
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...