Canonical Transfer-function Realization for Schur-Agler-class Functions on Domains with Matrix Polynomial Defining Function in $$\mathbb{C}^n$$ View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Joseph A. Ball , Vladimir Bolotnikov

ABSTRACT

It is well known that a Schur-class function \( \mathbf{S}(z)\), i.e.,a holomorphic function on the unit disk whose values are contraction operators between two Hilbert spaces u(the input space) and y (the output space), can be written as the characteristic function \( \mathbf{S}(z)=D+{_Z}C(I-{_Z}A)^{-1}B\) of the unitary colligation \(\mathbf{U}=\begin{array}{llll}[A & B \\ C & D] \end{array}\) (or as the transfer function of the associated conservative linear system) where U defines a unitary operator from \( \mathbf{X}\bigoplus\mathbf{U}\; to \; \mathbf{X}\bigoplus\mathbf{Y}\) where the Hilbert space X is an appropriately chosen state space. Moreover, this transfer function is essentially uniquely determined if U is also required to satisfy a certain minimality condition (U should be “closely-connected”). In addition, by choosing the state space X to be the two-component de Branges-Rovnyak reproducing kernel Hilbert space \(\mathcal{H}({\hat{K}})\), one can arrive at a unique canonical functional-model form for a U meeting the minimality requirement. Recent work of the authors and others has extended the notion of Schur class and transfer-function representation for Schur-class functions to several-variable complex domains with matrix-polynomial defining function. In this setting the term “Schur-Agler class” is used since one also imposes that a certain von Neumann inequality be satisfied. In this article we develop an analogue of the two-component de Branges-Rovnyak reproducing kernel Hilbert space for this more general setting and thereby arrive at a two-component canonical functional model colligation for the analogue of closely-connected unitary transfer-function realization for this Schur-Agler class. A number of new technical issues appear in this setting which are not present in the classical case. More... »

PAGES

23-55

Book

TITLE

Recent Progress in Operator Theory and Its Applications

ISBN

978-3-0348-0345-8
978-3-0348-0346-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-0346-5_3

DOI

http://dx.doi.org/10.1007/978-3-0348-0346-5_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033003030


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Mathematics, Virginia Tech, Blacksburg, VA\u00a024061-0123, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ball", 
        "givenName": "Joseph A.", 
        "id": "sg:person.013713536413.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713536413.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, Williamsburg, VA\u00a023187-8795, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9939-02-06321-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009452245"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "It is well known that a Schur-class function \\( \\mathbf{S}(z)\\), i.e.,a holomorphic function on the unit disk whose values are contraction operators between two Hilbert spaces u(the input space) and y (the output space), can be written as the characteristic function \\( \\mathbf{S}(z)=D+{_Z}C(I-{_Z}A)^{-1}B\\) of the unitary colligation \\(\\mathbf{U}=\\begin{array}{llll}[A & B \\\\ C & D] \\end{array}\\) (or as the transfer function of the associated conservative linear system) where U defines a unitary operator from \\( \\mathbf{X}\\bigoplus\\mathbf{U}\\; to \\; \\mathbf{X}\\bigoplus\\mathbf{Y}\\) where the Hilbert space X is an appropriately chosen state space. Moreover, this transfer function is essentially uniquely determined if U is also required to satisfy a certain minimality condition (U should be \u201cclosely-connected\u201d). In addition, by choosing the state space X to be the two-component de Branges-Rovnyak reproducing kernel Hilbert space \\(\\mathcal{H}({\\hat{K}})\\), one can arrive at a unique canonical functional-model form for a U meeting the minimality requirement. Recent work of the authors and others has extended the notion of Schur class and transfer-function representation for Schur-class functions to several-variable complex domains with matrix-polynomial defining function. In this setting the term \u201cSchur-Agler class\u201d is used since one also imposes that a certain von Neumann inequality be satisfied. In this article we develop an analogue of the two-component de Branges-Rovnyak reproducing kernel Hilbert space for this more general setting and thereby arrive at a two-component canonical functional model colligation for the analogue of closely-connected unitary transfer-function realization for this Schur-Agler class. A number of new technical issues appear in this setting which are not present in the classical case.", 
    "editor": [
      {
        "familyName": "Ball", 
        "givenName": "Joseph A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Curto", 
        "givenName": "Ra\u00fal E.", 
        "type": "Person"
      }, 
      {
        "familyName": "Grudsky", 
        "givenName": "Sergei M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Helton", 
        "givenName": "J. William", 
        "type": "Person"
      }, 
      {
        "familyName": "Quiroga-Barranco", 
        "givenName": "Ra\u00fal", 
        "type": "Person"
      }, 
      {
        "familyName": "Vasilevski", 
        "givenName": "Nikolai L.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-0346-5_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-0345-8", 
        "978-3-0348-0346-5"
      ], 
      "name": "Recent Progress in Operator Theory and Its Applications", 
      "type": "Book"
    }, 
    "name": "Canonical Transfer-function Realization for Schur-Agler-class Functions on Domains with Matrix Polynomial Defining Function in $$\\mathbb{C}^n$$", 
    "pagination": "23-55", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-0346-5_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9d38d3acb5a766ff7de93585cee24677dbbc87bcb1b7c319afcdcedc1fcd492b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033003030"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Springer Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-0346-5_3", 
      "https://app.dimensions.ai/details/publication/pub.1033003030"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000263.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-0346-5_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0346-5_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0346-5_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0346-5_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0346-5_3'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-0346-5_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfb70e871a9304bbe83f9a8cfef7108c4
4 schema:citation https://doi.org/10.1090/s0002-9939-02-06321-9
5 schema:datePublished 2012
6 schema:datePublishedReg 2012-01-01
7 schema:description It is well known that a Schur-class function \( \mathbf{S}(z)\), i.e.,a holomorphic function on the unit disk whose values are contraction operators between two Hilbert spaces u(the input space) and y (the output space), can be written as the characteristic function \( \mathbf{S}(z)=D+{_Z}C(I-{_Z}A)^{-1}B\) of the unitary colligation \(\mathbf{U}=\begin{array}{llll}[A & B \\ C & D] \end{array}\) (or as the transfer function of the associated conservative linear system) where U defines a unitary operator from \( \mathbf{X}\bigoplus\mathbf{U}\; to \; \mathbf{X}\bigoplus\mathbf{Y}\) where the Hilbert space X is an appropriately chosen state space. Moreover, this transfer function is essentially uniquely determined if U is also required to satisfy a certain minimality condition (U should be “closely-connected”). In addition, by choosing the state space X to be the two-component de Branges-Rovnyak reproducing kernel Hilbert space \(\mathcal{H}({\hat{K}})\), one can arrive at a unique canonical functional-model form for a U meeting the minimality requirement. Recent work of the authors and others has extended the notion of Schur class and transfer-function representation for Schur-class functions to several-variable complex domains with matrix-polynomial defining function. In this setting the term “Schur-Agler class” is used since one also imposes that a certain von Neumann inequality be satisfied. In this article we develop an analogue of the two-component de Branges-Rovnyak reproducing kernel Hilbert space for this more general setting and thereby arrive at a two-component canonical functional model colligation for the analogue of closely-connected unitary transfer-function realization for this Schur-Agler class. A number of new technical issues appear in this setting which are not present in the classical case.
8 schema:editor N3ff12b9675694f748fd2c1bde1b0c391
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N208d1a8778f84dfb94b6d752448c6bfe
13 schema:name Canonical Transfer-function Realization for Schur-Agler-class Functions on Domains with Matrix Polynomial Defining Function in $$\mathbb{C}^n$$
14 schema:pagination 23-55
15 schema:productId N8fb54c82865948be9daeb67c1d3fcf7b
16 Nb74225504f914900acb59539e76bc647
17 Nd295e2d9d9ae4bdf8379e59c2e6dc085
18 schema:publisher N75e25a77cf704494b6f801535371838b
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033003030
20 https://doi.org/10.1007/978-3-0348-0346-5_3
21 schema:sdDatePublished 2019-04-15T13:29
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N7195effb23424d90bb5eedb715c97135
24 schema:url http://link.springer.com/10.1007/978-3-0348-0346-5_3
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N01797b29e8464cd7888e5968e342d494 schema:familyName Ball
29 schema:givenName Joseph A.
30 rdf:type schema:Person
31 N01ba17f6733d4b1ba4836fadeee17357 schema:familyName Helton
32 schema:givenName J. William
33 rdf:type schema:Person
34 N208d1a8778f84dfb94b6d752448c6bfe schema:isbn 978-3-0348-0345-8
35 978-3-0348-0346-5
36 schema:name Recent Progress in Operator Theory and Its Applications
37 rdf:type schema:Book
38 N20c3cf2b6ae54614889a8f62601e9be6 schema:familyName Vasilevski
39 schema:givenName Nikolai L.
40 rdf:type schema:Person
41 N20e8bf1962b5423d928244e2f7180455 rdf:first N89f18b1c796448949a67e9884c6ff68f
42 rdf:rest N3f85af247b4942b18631f6c91df37177
43 N2b56b9ff3b7643c785a96b516818ddcf rdf:first N01ba17f6733d4b1ba4836fadeee17357
44 rdf:rest Nbe0af6d9b8c74f07b5e7bff0a97ecf0f
45 N2ff65b21db5a4e90bcffa91f18ba7a8c rdf:first N20c3cf2b6ae54614889a8f62601e9be6
46 rdf:rest rdf:nil
47 N3f65f46317fb495e85f04e859e1d3c27 schema:familyName Quiroga-Barranco
48 schema:givenName Raúl
49 rdf:type schema:Person
50 N3f85af247b4942b18631f6c91df37177 rdf:first Ne8ef9cacec814ec5872c7d51b8e4c6b9
51 rdf:rest N2b56b9ff3b7643c785a96b516818ddcf
52 N3ff12b9675694f748fd2c1bde1b0c391 rdf:first N01797b29e8464cd7888e5968e342d494
53 rdf:rest N20e8bf1962b5423d928244e2f7180455
54 N7195effb23424d90bb5eedb715c97135 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N75e25a77cf704494b6f801535371838b schema:location Basel
57 schema:name Springer Basel
58 rdf:type schema:Organisation
59 N89f18b1c796448949a67e9884c6ff68f schema:familyName Curto
60 schema:givenName Raúl E.
61 rdf:type schema:Person
62 N8fb54c82865948be9daeb67c1d3fcf7b schema:name dimensions_id
63 schema:value pub.1033003030
64 rdf:type schema:PropertyValue
65 Nb74225504f914900acb59539e76bc647 schema:name doi
66 schema:value 10.1007/978-3-0348-0346-5_3
67 rdf:type schema:PropertyValue
68 Nbe0af6d9b8c74f07b5e7bff0a97ecf0f rdf:first N3f65f46317fb495e85f04e859e1d3c27
69 rdf:rest N2ff65b21db5a4e90bcffa91f18ba7a8c
70 Nc5b510b8d05b49669ab63541d8620f03 rdf:first sg:person.01130533744.43
71 rdf:rest rdf:nil
72 Nd295e2d9d9ae4bdf8379e59c2e6dc085 schema:name readcube_id
73 schema:value 9d38d3acb5a766ff7de93585cee24677dbbc87bcb1b7c319afcdcedc1fcd492b
74 rdf:type schema:PropertyValue
75 Ne8ef9cacec814ec5872c7d51b8e4c6b9 schema:familyName Grudsky
76 schema:givenName Sergei M.
77 rdf:type schema:Person
78 Nfb70e871a9304bbe83f9a8cfef7108c4 rdf:first sg:person.013713536413.78
79 rdf:rest Nc5b510b8d05b49669ab63541d8620f03
80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
81 schema:name Mathematical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
84 schema:name Pure Mathematics
85 rdf:type schema:DefinedTerm
86 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
87 schema:familyName Bolotnikov
88 schema:givenName Vladimir
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
90 rdf:type schema:Person
91 sg:person.013713536413.78 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
92 schema:familyName Ball
93 schema:givenName Joseph A.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713536413.78
95 rdf:type schema:Person
96 https://doi.org/10.1090/s0002-9939-02-06321-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009452245
97 rdf:type schema:CreativeWork
98 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
99 schema:name Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795, USA
100 rdf:type schema:Organization
101 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
102 schema:name Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...