Canonical Transfer-function Realization for Schur-Agler-class Functions of the Polydisk View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2012

AUTHORS

Joseph A. Ball , Vladimir Bolotnikov

ABSTRACT

Associated with any Schur-class function S((z)) (i.e., a contractive operator-valued holomorphic function on the unit disk) is the de Branges- Rovnyak kernel Ks((z,C)) = [=([I-S(z))S(C)) * ]/(1–) and the reproducing kernel Hilbert space H(KS) which serves as the canonical functional-model statespace for a coisometric transfer-function realization s((z)) = D+z(A)1B of S. To obtain a canonical functional-model unitary transfer-function realization, it is now well understood that one must work with a certain (2 × 2)- block matrix kernel and associated two-component reproducing kernel Hilbert space. In this paper we indicate how these ideas extend to the multivariable setting where the unit disk is replaced by the unit polydisk in d complex variables. For the case d> 2, one must replace the Schur class by the more restrictive Schur-Agler class (defined in terms of the validity of a certain von Neumann inequality) in order to get a good realization theory paralleling the single-variable case. This work represents one contribution to the recent extension of the state-space method to multivariable settings, an area of research where Israel Gohberg was a prominent and leading practitioner. More... »

PAGES

75-122

Book

TITLE

A Panorama of Modern Operator Theory and Related Topics

ISBN

978-3-0348-0220-8
978-3-0348-0221-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0348-0221-5_4

DOI

http://dx.doi.org/10.1007/978-3-0348-0221-5_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043012322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Virginia Tech", 
          "id": "https://www.grid.ac/institutes/grid.438526.e", 
          "name": [
            "Department of Mathematics, Virginia Tech, Blacksburg, VA\u00a024061-0123, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ball", 
        "givenName": "Joseph A.", 
        "id": "sg:person.013713536413.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713536413.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, Williamsburg, VA\u00a023187-8795, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jfa.2009.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001343086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(70)90108-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003856916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00208-004-0554-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005209499", 
          "https://doi.org/10.1007/s00208-004-0554-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2004.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008089463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1950-0051437-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008121516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-02-06321-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009452245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/ajm.1999.0025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015080977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.2002.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016435126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(03)00456-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020836126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0024-3795(03)00456-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020836126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2006.03.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022782980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/zamm.19720520821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023281920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-005-1373-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025935397", 
          "https://doi.org/10.1007/s00020-005-1373-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026765871", 
          "https://doi.org/10.1007/bf00276494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026765871", 
          "https://doi.org/10.1007/bf00276494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01460977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034066506", 
          "https://doi.org/10.1007/bf01460977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01460977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034066506", 
          "https://doi.org/10.1007/bf01460977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035076039", 
          "https://doi.org/10.1007/bf00276493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035076039", 
          "https://doi.org/10.1007/bf00276493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6911(02)00326-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035243361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-6911(02)00326-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035243361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2008.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035683869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/crll.1999.506.191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041836099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.1998.3278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047954570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-004-1309-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048363369", 
          "https://doi.org/10.1007/s00020-004-1309-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00047026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049796636", 
          "https://doi.org/10.1007/bf00047026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00047026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049796636", 
          "https://doi.org/10.1007/bf00047026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.10.076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050261091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jfan.2000.3599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052094682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0363012904443750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0363012904443750", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062880815"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012", 
    "datePublishedReg": "2012-01-01", 
    "description": "Associated with any Schur-class function S((z)) (i.e., a contractive operator-valued holomorphic function on the unit disk) is the de Branges- Rovnyak kernel Ks((z,C)) = [=([I-S(z))S(C)) * ]/(1\u2013) and the reproducing kernel Hilbert space H(KS) which serves as the canonical functional-model statespace for a coisometric transfer-function realization s((z)) = D+z(A)1B of S. To obtain a canonical functional-model unitary transfer-function realization, it is now well understood that one must work with a certain (2 \u00d7 2)- block matrix kernel and associated two-component reproducing kernel Hilbert space. In this paper we indicate how these ideas extend to the multivariable setting where the unit disk is replaced by the unit polydisk in d complex variables. For the case d> 2, one must replace the Schur class by the more restrictive Schur-Agler class (defined in terms of the validity of a certain von Neumann inequality) in order to get a good realization theory paralleling the single-variable case. This work represents one contribution to the recent extension of the state-space method to multivariable settings, an area of research where Israel Gohberg was a prominent and leading practitioner.", 
    "editor": [
      {
        "familyName": "Dym", 
        "givenName": "Harry", 
        "type": "Person"
      }, 
      {
        "familyName": "Kaashoek", 
        "givenName": "Marinus A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Lancaster", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "familyName": "Langer", 
        "givenName": "Heinz", 
        "type": "Person"
      }, 
      {
        "familyName": "Lerer", 
        "givenName": "Leonid", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0348-0221-5_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0348-0220-8", 
        "978-3-0348-0221-5"
      ], 
      "name": "A Panorama of Modern Operator Theory and Related Topics", 
      "type": "Book"
    }, 
    "name": "Canonical Transfer-function Realization for Schur-Agler-class Functions of the Polydisk", 
    "pagination": "75-122", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0348-0221-5_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cce1f55e694a372dac55b5a48fea7c4ddee07c652936b75d56260a87a1730b21"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043012322"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Springer Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0348-0221-5_4", 
      "https://app.dimensions.ai/details/publication/pub.1043012322"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000270.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/978-3-0348-0221-5_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0221-5_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0221-5_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0221-5_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0348-0221-5_4'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0348-0221-5_4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N17636245f2764c5286d5157a98a97605
4 schema:citation sg:pub.10.1007/bf00047026
5 sg:pub.10.1007/bf00276493
6 sg:pub.10.1007/bf00276494
7 sg:pub.10.1007/bf01460977
8 sg:pub.10.1007/s00020-004-1309-5
9 sg:pub.10.1007/s00020-005-1373-5
10 sg:pub.10.1007/s00208-004-0554-x
11 https://doi.org/10.1002/zamm.19720520821
12 https://doi.org/10.1006/jfan.1998.3278
13 https://doi.org/10.1006/jfan.2000.3599
14 https://doi.org/10.1016/0022-247x(70)90108-3
15 https://doi.org/10.1016/j.jfa.2004.04.008
16 https://doi.org/10.1016/j.jfa.2006.03.018
17 https://doi.org/10.1016/j.jfa.2008.10.019
18 https://doi.org/10.1016/j.jfa.2009.05.029
19 https://doi.org/10.1016/j.jmaa.2006.10.076
20 https://doi.org/10.1016/s0024-3795(03)00456-7
21 https://doi.org/10.1016/s0167-6911(02)00326-2
22 https://doi.org/10.1090/s0002-9939-02-06321-9
23 https://doi.org/10.1090/s0002-9947-1950-0051437-7
24 https://doi.org/10.1137/s0363012904443750
25 https://doi.org/10.1353/ajm.1999.0025
26 https://doi.org/10.1515/crll.1999.506.191
27 https://doi.org/10.1515/crll.2002.007
28 schema:datePublished 2012
29 schema:datePublishedReg 2012-01-01
30 schema:description Associated with any Schur-class function S((z)) (i.e., a contractive operator-valued holomorphic function on the unit disk) is the de Branges- Rovnyak kernel Ks((z,C)) = [=([I-S(z))S(C)) * ]/(1–) and the reproducing kernel Hilbert space H(KS) which serves as the canonical functional-model statespace for a coisometric transfer-function realization s((z)) = D+z(A)1B of S. To obtain a canonical functional-model unitary transfer-function realization, it is now well understood that one must work with a certain (2 × 2)- block matrix kernel and associated two-component reproducing kernel Hilbert space. In this paper we indicate how these ideas extend to the multivariable setting where the unit disk is replaced by the unit polydisk in d complex variables. For the case d> 2, one must replace the Schur class by the more restrictive Schur-Agler class (defined in terms of the validity of a certain von Neumann inequality) in order to get a good realization theory paralleling the single-variable case. This work represents one contribution to the recent extension of the state-space method to multivariable settings, an area of research where Israel Gohberg was a prominent and leading practitioner.
31 schema:editor Nbc616790a1454313a21e37e0534d5d66
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N6556c1e1a15b4e1cb34ca3a8fe8e94fe
36 schema:name Canonical Transfer-function Realization for Schur-Agler-class Functions of the Polydisk
37 schema:pagination 75-122
38 schema:productId N0559b6c070494e00a80b979f15057e08
39 N52a37bd84ef74c7aa764130fb510f663
40 N9d05cc5474954ac59823ae86986af11f
41 schema:publisher N485103ec79474c7cb9020db9189d4ede
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043012322
43 https://doi.org/10.1007/978-3-0348-0221-5_4
44 schema:sdDatePublished 2019-04-15T10:37
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N2f08b01c63f0458eaab1e48f9661a766
47 schema:url http://link.springer.com/10.1007/978-3-0348-0221-5_4
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N010273e1c5be4c2bb0257876f08b7ef4 rdf:first Nb2427fb430ed40ce9bd2ac6c8e609df5
52 rdf:rest Nf589fe25098944cc890cc9761c99b388
53 N0559b6c070494e00a80b979f15057e08 schema:name readcube_id
54 schema:value cce1f55e694a372dac55b5a48fea7c4ddee07c652936b75d56260a87a1730b21
55 rdf:type schema:PropertyValue
56 N17636245f2764c5286d5157a98a97605 rdf:first sg:person.013713536413.78
57 rdf:rest Nb1a4a00b5c1b45ec9ae912130da93408
58 N2f08b01c63f0458eaab1e48f9661a766 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N432ac71438484286b7e9c9259c0dd1dc schema:familyName Langer
61 schema:givenName Heinz
62 rdf:type schema:Person
63 N485103ec79474c7cb9020db9189d4ede schema:location Basel
64 schema:name Springer Basel
65 rdf:type schema:Organisation
66 N52a37bd84ef74c7aa764130fb510f663 schema:name doi
67 schema:value 10.1007/978-3-0348-0221-5_4
68 rdf:type schema:PropertyValue
69 N6556c1e1a15b4e1cb34ca3a8fe8e94fe schema:isbn 978-3-0348-0220-8
70 978-3-0348-0221-5
71 schema:name A Panorama of Modern Operator Theory and Related Topics
72 rdf:type schema:Book
73 N9d05cc5474954ac59823ae86986af11f schema:name dimensions_id
74 schema:value pub.1043012322
75 rdf:type schema:PropertyValue
76 Na07ddcb615cb4ddfbeba68a6cf406d24 schema:familyName Lancaster
77 schema:givenName Peter
78 rdf:type schema:Person
79 Nb1a4a00b5c1b45ec9ae912130da93408 rdf:first sg:person.01130533744.43
80 rdf:rest rdf:nil
81 Nb2427fb430ed40ce9bd2ac6c8e609df5 schema:familyName Kaashoek
82 schema:givenName Marinus A.
83 rdf:type schema:Person
84 Nb49e9516bebd460cb874643b7b8c1469 rdf:first N432ac71438484286b7e9c9259c0dd1dc
85 rdf:rest Nc3cbaeb7e6ca4f619092102a4b4fe557
86 Nbc616790a1454313a21e37e0534d5d66 rdf:first Nd517f1e796ad4635aad3e3e771c332de
87 rdf:rest N010273e1c5be4c2bb0257876f08b7ef4
88 Nc3cbaeb7e6ca4f619092102a4b4fe557 rdf:first Ndbb37d3d50f545d88feec42eeba825be
89 rdf:rest rdf:nil
90 Nd517f1e796ad4635aad3e3e771c332de schema:familyName Dym
91 schema:givenName Harry
92 rdf:type schema:Person
93 Ndbb37d3d50f545d88feec42eeba825be schema:familyName Lerer
94 schema:givenName Leonid
95 rdf:type schema:Person
96 Nf589fe25098944cc890cc9761c99b388 rdf:first Na07ddcb615cb4ddfbeba68a6cf406d24
97 rdf:rest Nb49e9516bebd460cb874643b7b8c1469
98 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
99 schema:name Mathematical Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
102 schema:name Pure Mathematics
103 rdf:type schema:DefinedTerm
104 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
105 schema:familyName Bolotnikov
106 schema:givenName Vladimir
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
108 rdf:type schema:Person
109 sg:person.013713536413.78 schema:affiliation https://www.grid.ac/institutes/grid.438526.e
110 schema:familyName Ball
111 schema:givenName Joseph A.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013713536413.78
113 rdf:type schema:Person
114 sg:pub.10.1007/bf00047026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049796636
115 https://doi.org/10.1007/bf00047026
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00276493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035076039
118 https://doi.org/10.1007/bf00276493
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00276494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026765871
121 https://doi.org/10.1007/bf00276494
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01460977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034066506
124 https://doi.org/10.1007/bf01460977
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00020-004-1309-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048363369
127 https://doi.org/10.1007/s00020-004-1309-5
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00020-005-1373-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025935397
130 https://doi.org/10.1007/s00020-005-1373-5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s00208-004-0554-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005209499
133 https://doi.org/10.1007/s00208-004-0554-x
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/zamm.19720520821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023281920
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1006/jfan.1998.3278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047954570
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1006/jfan.2000.3599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052094682
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/0022-247x(70)90108-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003856916
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jfa.2004.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008089463
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.jfa.2006.03.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022782980
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.jfa.2008.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035683869
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.jfa.2009.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001343086
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.jmaa.2006.10.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050261091
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/s0024-3795(03)00456-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020836126
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0167-6911(02)00326-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035243361
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1090/s0002-9939-02-06321-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009452245
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1090/s0002-9947-1950-0051437-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008121516
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1137/s0363012904443750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062880815
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1353/ajm.1999.0025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015080977
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1515/crll.1999.506.191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041836099
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1515/crll.2002.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016435126
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
170 schema:name Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.438526.e schema:alternateName Virginia Tech
173 schema:name Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...