Ontology type: schema:Chapter
2009
AUTHORSAad Dijksma , Annemarie Luger , Yuri Shondin
ABSTRACTThis paper is a continuation of Part I, au][9]_in the list of references, where models for Nк∞-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular Nк∞ -function is approximated by regular Nк∞-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out. More... »
PAGES125-169
Recent Advances in Operator Theory in Hilbert and Krein Spaces
ISBN
978-3-0346-0179-5
978-3-0346-0180-1
http://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8
DOIhttp://dx.doi.org/10.1007/978-3-0346-0180-1_8
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1021814384
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "Aad",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lund University",
"id": "https://www.grid.ac/institutes/grid.4514.4",
"name": [
"Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden"
],
"type": "Organization"
},
"familyName": "Luger",
"givenName": "Annemarie",
"id": "sg:person.011442625430.95",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia"
],
"type": "Organization"
},
"familyName": "Shondin",
"givenName": "Yuri",
"id": "sg:person.015771172577.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-0348-8413-6_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000870627",
"https://doi.org/10.1007/978-3-0348-8413-6_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8413-6_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000870627",
"https://doi.org/10.1007/978-3-0348-8413-6_8"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jdeq.1999.3755",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002159253"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0022-1236(78)90094-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005295899"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9374-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011488831",
"https://doi.org/10.1007/978-3-0348-9374-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-9374-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011488831",
"https://doi.org/10.1007/978-3-0348-9374-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-12678-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011943444",
"https://doi.org/10.1007/978-3-662-12678-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-12678-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011943444",
"https://doi.org/10.1007/978-3-662-12678-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0022-1236(03)00068-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017222504"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0022-1236(03)00068-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017222504"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01238863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017336779",
"https://doi.org/10.1007/bf01238863"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-7947-7_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021766530",
"https://doi.org/10.1007/978-3-0348-7947-7_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-7947-7_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021766530",
"https://doi.org/10.1007/978-3-0348-7947-7_5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mana.200410689",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024171462"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7643-8911-6_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024574044",
"https://doi.org/10.1007/978-3-7643-8911-6_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-7643-8911-6_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024574044",
"https://doi.org/10.1007/978-3-7643-8911-6_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/3-7643-7516-7_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028386729",
"https://doi.org/10.1007/3-7643-7516-7_5"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/mana.200510410",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045685015"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8403-7_30",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050955161",
"https://doi.org/10.1007/978-3-0348-8403-7_30"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8403-7_30",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050955161",
"https://doi.org/10.1007/978-3-0348-8403-7_30"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0305-4470/38/22/023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059079223"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1088/0305-4470/38/22/023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059079223"
],
"type": "CreativeWork"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "This paper is a continuation of Part I, au][9]_in the list of references, where models for N\u043a\u221e-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular N\u043a\u221e -function is approximated by regular N\u043a\u221e-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out.",
"editor": [
{
"familyName": "Behrndt",
"givenName": "Jussi",
"type": "Person"
},
{
"familyName": "F\u00f6rster",
"givenName": "Karl-Heinz",
"type": "Person"
},
{
"familyName": "Trunk",
"givenName": "Carsten",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-0346-0180-1_8",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-0346-0179-5",
"978-3-0346-0180-1"
],
"name": "Recent Advances in Operator Theory in Hilbert and Krein Spaces",
"type": "Book"
},
"name": "Approximation of N\u03ba\u221e-functions II: Convergence of Models",
"pagination": "125-169",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1021814384"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-0346-0180-1_8"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"67ee58948919961e49fb36603553276a4df5b57d385426a3371dc552360a8cd6"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user Basel",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-0346-0180-1_8",
"https://app.dimensions.ai/details/publication/pub.1021814384"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T07:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57874_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-0346-0180-1_8"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
23 PREDICATES
41 URIs
20 LITERALS
8 BLANK NODES