Approximation of Nκ∞-functions II: Convergence of Models View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Aad Dijksma , Annemarie Luger , Yuri Shondin

ABSTRACT

This paper is a continuation of Part I, au][9]_in the list of references, where models for Nк∞-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular Nк∞ -function is approximated by regular Nк∞-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out. More... »

PAGES

125-169

Book

TITLE

Recent Advances in Operator Theory in Hilbert and Krein Spaces

ISBN

978-3-0346-0179-5
978-3-0346-0180-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8

DOI

http://dx.doi.org/10.1007/978-3-0346-0180-1_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021814384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luger", 
        "givenName": "Annemarie", 
        "id": "sg:person.011442625430.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000870627", 
          "https://doi.org/10.1007/978-3-0348-8413-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000870627", 
          "https://doi.org/10.1007/978-3-0348-8413-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1999.3755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90094-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005295899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9374-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011488831", 
          "https://doi.org/10.1007/978-3-0348-9374-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9374-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011488831", 
          "https://doi.org/10.1007/978-3-0348-9374-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011943444", 
          "https://doi.org/10.1007/978-3-662-12678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011943444", 
          "https://doi.org/10.1007/978-3-662-12678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017336779", 
          "https://doi.org/10.1007/bf01238863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7947-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021766530", 
          "https://doi.org/10.1007/978-3-0348-7947-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7947-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021766530", 
          "https://doi.org/10.1007/978-3-0348-7947-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200410689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024171462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8911-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024574044", 
          "https://doi.org/10.1007/978-3-7643-8911-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8911-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024574044", 
          "https://doi.org/10.1007/978-3-7643-8911-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7516-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028386729", 
          "https://doi.org/10.1007/3-7643-7516-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200510410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8403-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050955161", 
          "https://doi.org/10.1007/978-3-0348-8403-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8403-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050955161", 
          "https://doi.org/10.1007/978-3-0348-8403-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/22/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/22/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079223"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "This paper is a continuation of Part I, au][9]_in the list of references, where models for N\u043a\u221e-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular N\u043a\u221e -function is approximated by regular N\u043a\u221e-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out.", 
    "editor": [
      {
        "familyName": "Behrndt", 
        "givenName": "Jussi", 
        "type": "Person"
      }, 
      {
        "familyName": "F\u00f6rster", 
        "givenName": "Karl-Heinz", 
        "type": "Person"
      }, 
      {
        "familyName": "Trunk", 
        "givenName": "Carsten", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0346-0180-1_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0346-0179-5", 
        "978-3-0346-0180-1"
      ], 
      "name": "Recent Advances in Operator Theory in Hilbert and Krein Spaces", 
      "type": "Book"
    }, 
    "name": "Approximation of N\u03ba\u221e-functions II: Convergence of Models", 
    "pagination": "125-169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021814384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0346-0180-1_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "67ee58948919961e49fb36603553276a4df5b57d385426a3371dc552360a8cd6"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0346-0180-1_8", 
      "https://app.dimensions.ai/details/publication/pub.1021814384"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57874_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0346-0180-1_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0346-0180-1_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne2d505b4bba74709921002102775be5c
4 schema:citation sg:pub.10.1007/3-7643-7516-7_5
5 sg:pub.10.1007/978-3-0348-7947-7_5
6 sg:pub.10.1007/978-3-0348-8403-7_30
7 sg:pub.10.1007/978-3-0348-8413-6_8
8 sg:pub.10.1007/978-3-0348-9374-9
9 sg:pub.10.1007/978-3-662-12678-3
10 sg:pub.10.1007/978-3-7643-8911-6_5
11 sg:pub.10.1007/bf01238863
12 https://doi.org/10.1002/mana.200410689
13 https://doi.org/10.1002/mana.200510410
14 https://doi.org/10.1006/jdeq.1999.3755
15 https://doi.org/10.1016/0022-1236(78)90094-0
16 https://doi.org/10.1016/s0022-1236(03)00068-5
17 https://doi.org/10.1088/0305-4470/38/22/023
18 schema:datePublished 2009
19 schema:datePublishedReg 2009-01-01
20 schema:description This paper is a continuation of Part I, au][9]_in the list of references, where models for Nк∞-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular Nк∞ -function is approximated by regular Nк∞-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out.
21 schema:editor Nbc27e77147c245e8a7acf960a3bf8889
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nf1485be8c45a4b9ab870d36c566256db
26 schema:name Approximation of Nκ∞-functions II: Convergence of Models
27 schema:pagination 125-169
28 schema:productId N6fc116661231480cabfb28634ae158f1
29 N7f7635ee5190443b8b462baca36773c5
30 Ne865caf394cd40f39be3bc276847d999
31 schema:publisher N13362084d19d462d859018b1eca554c2
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021814384
33 https://doi.org/10.1007/978-3-0346-0180-1_8
34 schema:sdDatePublished 2019-04-16T07:30
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Na78dfb93830f4d03ae5f8fa0ceaffbc8
37 schema:url https://link.springer.com/10.1007%2F978-3-0346-0180-1_8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N13362084d19d462d859018b1eca554c2 schema:location Basel
42 schema:name Birkhäuser Basel
43 rdf:type schema:Organisation
44 N410d93d28c4c4f668dc964d668bb8e2a schema:familyName Behrndt
45 schema:givenName Jussi
46 rdf:type schema:Person
47 N6169c34f01b04281aad67b4755684e76 rdf:first Ndd0cbcf62cf9457bb3a4dac0196c9a62
48 rdf:rest N6312f156414041d4bb809ede21054bef
49 N6312f156414041d4bb809ede21054bef rdf:first Nb960fec835d8456db5768a027b9e4ac2
50 rdf:rest rdf:nil
51 N687de21c1f664e61ab34733ae343d018 schema:name Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia
52 rdf:type schema:Organization
53 N6fc116661231480cabfb28634ae158f1 schema:name doi
54 schema:value 10.1007/978-3-0346-0180-1_8
55 rdf:type schema:PropertyValue
56 N7f7635ee5190443b8b462baca36773c5 schema:name dimensions_id
57 schema:value pub.1021814384
58 rdf:type schema:PropertyValue
59 Na78dfb93830f4d03ae5f8fa0ceaffbc8 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nb8328f16373c4482901acab8d3277645 rdf:first sg:person.011442625430.95
62 rdf:rest Nf2617d65f0ed47508dc8938839bbe5f9
63 Nb960fec835d8456db5768a027b9e4ac2 schema:familyName Trunk
64 schema:givenName Carsten
65 rdf:type schema:Person
66 Nbc27e77147c245e8a7acf960a3bf8889 rdf:first N410d93d28c4c4f668dc964d668bb8e2a
67 rdf:rest N6169c34f01b04281aad67b4755684e76
68 Ndd0cbcf62cf9457bb3a4dac0196c9a62 schema:familyName Förster
69 schema:givenName Karl-Heinz
70 rdf:type schema:Person
71 Ne2d505b4bba74709921002102775be5c rdf:first sg:person.013762723211.39
72 rdf:rest Nb8328f16373c4482901acab8d3277645
73 Ne865caf394cd40f39be3bc276847d999 schema:name readcube_id
74 schema:value 67ee58948919961e49fb36603553276a4df5b57d385426a3371dc552360a8cd6
75 rdf:type schema:PropertyValue
76 Nf1485be8c45a4b9ab870d36c566256db schema:isbn 978-3-0346-0179-5
77 978-3-0346-0180-1
78 schema:name Recent Advances in Operator Theory in Hilbert and Krein Spaces
79 rdf:type schema:Book
80 Nf2617d65f0ed47508dc8938839bbe5f9 rdf:first sg:person.015771172577.94
81 rdf:rest rdf:nil
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:person.011442625430.95 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
89 schema:familyName Luger
90 schema:givenName Annemarie
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95
92 rdf:type schema:Person
93 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
94 schema:familyName Dijksma
95 schema:givenName Aad
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
97 rdf:type schema:Person
98 sg:person.015771172577.94 schema:affiliation N687de21c1f664e61ab34733ae343d018
99 schema:familyName Shondin
100 schema:givenName Yuri
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
102 rdf:type schema:Person
103 sg:pub.10.1007/3-7643-7516-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386729
104 https://doi.org/10.1007/3-7643-7516-7_5
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-0348-7947-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021766530
107 https://doi.org/10.1007/978-3-0348-7947-7_5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-0348-8403-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050955161
110 https://doi.org/10.1007/978-3-0348-8403-7_30
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-0348-8413-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000870627
113 https://doi.org/10.1007/978-3-0348-8413-6_8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-0348-9374-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011488831
116 https://doi.org/10.1007/978-3-0348-9374-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-662-12678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011943444
119 https://doi.org/10.1007/978-3-662-12678-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-7643-8911-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024574044
122 https://doi.org/10.1007/978-3-7643-8911-6_5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01238863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017336779
125 https://doi.org/10.1007/bf01238863
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/mana.200410689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024171462
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/mana.200510410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045685015
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/jdeq.1999.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159253
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0022-1236(78)90094-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005295899
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0022-1236(03)00068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017222504
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0305-4470/38/22/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079223
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
140 schema:name Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
143 schema:name Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...