Approximation of Nκ∞-functions II: Convergence of Models View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Aad Dijksma , Annemarie Luger , Yuri Shondin

ABSTRACT

This paper is a continuation of Part I, au][9]_in the list of references, where models for Nк∞-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular Nк∞ -function is approximated by regular Nк∞-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out. More... »

PAGES

125-169

Book

TITLE

Recent Advances in Operator Theory in Hilbert and Krein Spaces

ISBN

978-3-0346-0179-5
978-3-0346-0180-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8

DOI

http://dx.doi.org/10.1007/978-3-0346-0180-1_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021814384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luger", 
        "givenName": "Annemarie", 
        "id": "sg:person.011442625430.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000870627", 
          "https://doi.org/10.1007/978-3-0348-8413-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000870627", 
          "https://doi.org/10.1007/978-3-0348-8413-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1999.3755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90094-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005295899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9374-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011488831", 
          "https://doi.org/10.1007/978-3-0348-9374-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9374-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011488831", 
          "https://doi.org/10.1007/978-3-0348-9374-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011943444", 
          "https://doi.org/10.1007/978-3-662-12678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011943444", 
          "https://doi.org/10.1007/978-3-662-12678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017336779", 
          "https://doi.org/10.1007/bf01238863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7947-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021766530", 
          "https://doi.org/10.1007/978-3-0348-7947-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7947-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021766530", 
          "https://doi.org/10.1007/978-3-0348-7947-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200410689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024171462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8911-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024574044", 
          "https://doi.org/10.1007/978-3-7643-8911-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8911-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024574044", 
          "https://doi.org/10.1007/978-3-7643-8911-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7516-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028386729", 
          "https://doi.org/10.1007/3-7643-7516-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200510410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8403-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050955161", 
          "https://doi.org/10.1007/978-3-0348-8403-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8403-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050955161", 
          "https://doi.org/10.1007/978-3-0348-8403-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/22/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/22/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079223"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "This paper is a continuation of Part I, au][9]_in the list of references, where models for N\u043a\u221e-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular N\u043a\u221e -function is approximated by regular N\u043a\u221e-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out.", 
    "editor": [
      {
        "familyName": "Behrndt", 
        "givenName": "Jussi", 
        "type": "Person"
      }, 
      {
        "familyName": "F\u00f6rster", 
        "givenName": "Karl-Heinz", 
        "type": "Person"
      }, 
      {
        "familyName": "Trunk", 
        "givenName": "Carsten", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0346-0180-1_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0346-0179-5", 
        "978-3-0346-0180-1"
      ], 
      "name": "Recent Advances in Operator Theory in Hilbert and Krein Spaces", 
      "type": "Book"
    }, 
    "name": "Approximation of N\u03ba\u221e-functions II: Convergence of Models", 
    "pagination": "125-169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021814384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0346-0180-1_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "67ee58948919961e49fb36603553276a4df5b57d385426a3371dc552360a8cd6"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0346-0180-1_8", 
      "https://app.dimensions.ai/details/publication/pub.1021814384"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57874_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0346-0180-1_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0346-0180-1_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N276f1eb8cc1e49978f70985cc844cd06
4 schema:citation sg:pub.10.1007/3-7643-7516-7_5
5 sg:pub.10.1007/978-3-0348-7947-7_5
6 sg:pub.10.1007/978-3-0348-8403-7_30
7 sg:pub.10.1007/978-3-0348-8413-6_8
8 sg:pub.10.1007/978-3-0348-9374-9
9 sg:pub.10.1007/978-3-662-12678-3
10 sg:pub.10.1007/978-3-7643-8911-6_5
11 sg:pub.10.1007/bf01238863
12 https://doi.org/10.1002/mana.200410689
13 https://doi.org/10.1002/mana.200510410
14 https://doi.org/10.1006/jdeq.1999.3755
15 https://doi.org/10.1016/0022-1236(78)90094-0
16 https://doi.org/10.1016/s0022-1236(03)00068-5
17 https://doi.org/10.1088/0305-4470/38/22/023
18 schema:datePublished 2009
19 schema:datePublishedReg 2009-01-01
20 schema:description This paper is a continuation of Part I, au][9]_in the list of references, where models for Nк∞-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular Nк∞ -function is approximated by regular Nк∞-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out.
21 schema:editor Nc35cd004e5f54b03a7b8a55acdd7843a
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nc54114c8b4d34abd8f043760331a6fff
26 schema:name Approximation of Nκ∞-functions II: Convergence of Models
27 schema:pagination 125-169
28 schema:productId N26ba4b6c22794a109b794f127a68149b
29 N6c468be1f0164da19a8a0555e2a3a285
30 N8031a9d4d92f41f8affb03c7606825db
31 schema:publisher Na75590d292be41d3a54848541a98a025
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021814384
33 https://doi.org/10.1007/978-3-0346-0180-1_8
34 schema:sdDatePublished 2019-04-16T07:30
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N6a582f184dc24027a72e98375481d0f3
37 schema:url https://link.springer.com/10.1007%2F978-3-0346-0180-1_8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N26ba4b6c22794a109b794f127a68149b schema:name dimensions_id
42 schema:value pub.1021814384
43 rdf:type schema:PropertyValue
44 N276f1eb8cc1e49978f70985cc844cd06 rdf:first sg:person.013762723211.39
45 rdf:rest N6f16242dfbbe493ea0484e8a7647f36a
46 N409d285f2cdc4f60b1ae82c1f25b8e14 schema:familyName Behrndt
47 schema:givenName Jussi
48 rdf:type schema:Person
49 N6a582f184dc24027a72e98375481d0f3 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N6c468be1f0164da19a8a0555e2a3a285 schema:name doi
52 schema:value 10.1007/978-3-0346-0180-1_8
53 rdf:type schema:PropertyValue
54 N6d3d103da7de4c4591ed045aac4821df schema:name Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia
55 rdf:type schema:Organization
56 N6f16242dfbbe493ea0484e8a7647f36a rdf:first sg:person.011442625430.95
57 rdf:rest Nfa8bb9df40b94a1bb73114979faf80df
58 N8031a9d4d92f41f8affb03c7606825db schema:name readcube_id
59 schema:value 67ee58948919961e49fb36603553276a4df5b57d385426a3371dc552360a8cd6
60 rdf:type schema:PropertyValue
61 N8cebf0a5bb6f43f8adcfac5e4833dc37 schema:familyName Förster
62 schema:givenName Karl-Heinz
63 rdf:type schema:Person
64 Na75590d292be41d3a54848541a98a025 schema:location Basel
65 schema:name Birkhäuser Basel
66 rdf:type schema:Organisation
67 Nc35cd004e5f54b03a7b8a55acdd7843a rdf:first N409d285f2cdc4f60b1ae82c1f25b8e14
68 rdf:rest Nea8634a6b2ec4c0aa933d7dd24339548
69 Nc54114c8b4d34abd8f043760331a6fff schema:isbn 978-3-0346-0179-5
70 978-3-0346-0180-1
71 schema:name Recent Advances in Operator Theory in Hilbert and Krein Spaces
72 rdf:type schema:Book
73 Ncd6a9c70a47c413cb0db5214b0df39e7 rdf:first Nda1334230e6b4005a598fff1d5f4befe
74 rdf:rest rdf:nil
75 Nda1334230e6b4005a598fff1d5f4befe schema:familyName Trunk
76 schema:givenName Carsten
77 rdf:type schema:Person
78 Nea8634a6b2ec4c0aa933d7dd24339548 rdf:first N8cebf0a5bb6f43f8adcfac5e4833dc37
79 rdf:rest Ncd6a9c70a47c413cb0db5214b0df39e7
80 Nfa8bb9df40b94a1bb73114979faf80df rdf:first sg:person.015771172577.94
81 rdf:rest rdf:nil
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:person.011442625430.95 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
89 schema:familyName Luger
90 schema:givenName Annemarie
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95
92 rdf:type schema:Person
93 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
94 schema:familyName Dijksma
95 schema:givenName Aad
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
97 rdf:type schema:Person
98 sg:person.015771172577.94 schema:affiliation N6d3d103da7de4c4591ed045aac4821df
99 schema:familyName Shondin
100 schema:givenName Yuri
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
102 rdf:type schema:Person
103 sg:pub.10.1007/3-7643-7516-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386729
104 https://doi.org/10.1007/3-7643-7516-7_5
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-0348-7947-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021766530
107 https://doi.org/10.1007/978-3-0348-7947-7_5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-0348-8403-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050955161
110 https://doi.org/10.1007/978-3-0348-8403-7_30
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-0348-8413-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000870627
113 https://doi.org/10.1007/978-3-0348-8413-6_8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-0348-9374-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011488831
116 https://doi.org/10.1007/978-3-0348-9374-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-662-12678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011943444
119 https://doi.org/10.1007/978-3-662-12678-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-7643-8911-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024574044
122 https://doi.org/10.1007/978-3-7643-8911-6_5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01238863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017336779
125 https://doi.org/10.1007/bf01238863
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/mana.200410689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024171462
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/mana.200510410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045685015
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/jdeq.1999.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159253
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0022-1236(78)90094-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005295899
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0022-1236(03)00068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017222504
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0305-4470/38/22/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079223
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
140 schema:name Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
143 schema:name Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...