Approximation of Nκ∞-functions II: Convergence of Models View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Aad Dijksma , Annemarie Luger , Yuri Shondin

ABSTRACT

This paper is a continuation of Part I, au][9]_in the list of references, where models for Nк∞-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular Nк∞ -function is approximated by regular Nк∞-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out. More... »

PAGES

125-169

References to SciGraph publications

Book

TITLE

Recent Advances in Operator Theory in Hilbert and Krein Spaces

ISBN

978-3-0346-0179-5
978-3-0346-0180-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8

DOI

http://dx.doi.org/10.1007/978-3-0346-0180-1_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021814384


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "Aad", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lund University", 
          "id": "https://www.grid.ac/institutes/grid.4514.4", 
          "name": [
            "Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luger", 
        "givenName": "Annemarie", 
        "id": "sg:person.011442625430.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shondin", 
        "givenName": "Yuri", 
        "id": "sg:person.015771172577.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000870627", 
          "https://doi.org/10.1007/978-3-0348-8413-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8413-6_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000870627", 
          "https://doi.org/10.1007/978-3-0348-8413-6_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jdeq.1999.3755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002159253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-1236(78)90094-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005295899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9374-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011488831", 
          "https://doi.org/10.1007/978-3-0348-9374-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-9374-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011488831", 
          "https://doi.org/10.1007/978-3-0348-9374-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011943444", 
          "https://doi.org/10.1007/978-3-662-12678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011943444", 
          "https://doi.org/10.1007/978-3-662-12678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-1236(03)00068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017222504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01238863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017336779", 
          "https://doi.org/10.1007/bf01238863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7947-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021766530", 
          "https://doi.org/10.1007/978-3-0348-7947-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7947-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021766530", 
          "https://doi.org/10.1007/978-3-0348-7947-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200410689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024171462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8911-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024574044", 
          "https://doi.org/10.1007/978-3-7643-8911-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7643-8911-6_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024574044", 
          "https://doi.org/10.1007/978-3-7643-8911-6_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7516-7_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028386729", 
          "https://doi.org/10.1007/3-7643-7516-7_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.200510410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045685015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8403-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050955161", 
          "https://doi.org/10.1007/978-3-0348-8403-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-8403-7_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050955161", 
          "https://doi.org/10.1007/978-3-0348-8403-7_30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/22/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/38/22/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059079223"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "This paper is a continuation of Part I, au][9]_in the list of references, where models for N\u043a\u221e-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular N\u043a\u221e -function is approximated by regular N\u043a\u221e-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out.", 
    "editor": [
      {
        "familyName": "Behrndt", 
        "givenName": "Jussi", 
        "type": "Person"
      }, 
      {
        "familyName": "F\u00f6rster", 
        "givenName": "Karl-Heinz", 
        "type": "Person"
      }, 
      {
        "familyName": "Trunk", 
        "givenName": "Carsten", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0346-0180-1_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0346-0179-5", 
        "978-3-0346-0180-1"
      ], 
      "name": "Recent Advances in Operator Theory in Hilbert and Krein Spaces", 
      "type": "Book"
    }, 
    "name": "Approximation of N\u03ba\u221e-functions II: Convergence of Models", 
    "pagination": "125-169", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021814384"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0346-0180-1_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "67ee58948919961e49fb36603553276a4df5b57d385426a3371dc552360a8cd6"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0346-0180-1_8", 
      "https://app.dimensions.ai/details/publication/pub.1021814384"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57874_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0346-0180-1_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_8'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0346-0180-1_8 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndb5ca6c23a5e4a30a7e23047447e131a
4 schema:citation sg:pub.10.1007/3-7643-7516-7_5
5 sg:pub.10.1007/978-3-0348-7947-7_5
6 sg:pub.10.1007/978-3-0348-8403-7_30
7 sg:pub.10.1007/978-3-0348-8413-6_8
8 sg:pub.10.1007/978-3-0348-9374-9
9 sg:pub.10.1007/978-3-662-12678-3
10 sg:pub.10.1007/978-3-7643-8911-6_5
11 sg:pub.10.1007/bf01238863
12 https://doi.org/10.1002/mana.200410689
13 https://doi.org/10.1002/mana.200510410
14 https://doi.org/10.1006/jdeq.1999.3755
15 https://doi.org/10.1016/0022-1236(78)90094-0
16 https://doi.org/10.1016/s0022-1236(03)00068-5
17 https://doi.org/10.1088/0305-4470/38/22/023
18 schema:datePublished 2009
19 schema:datePublishedReg 2009-01-01
20 schema:description This paper is a continuation of Part I, au][9]_in the list of references, where models for Nк∞-functions have been studied in detail. In the present paper we investigate the convergence of the corresponding models as a singular Nк∞ -function is approximated by regular Nк∞-functions. This involves the theory about approximating an operator by operators acting in different spaces. In the last section an example related to the Bessel differential operator is worked out.
21 schema:editor Nc8bd0b2e96b14df69d32fb831723cdf9
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf Nf800a9760ff9457690e9ba7280a24663
26 schema:name Approximation of Nκ∞-functions II: Convergence of Models
27 schema:pagination 125-169
28 schema:productId N3ece6348d8924b3e9558cbdb3b5c1a15
29 N5762662e38024485b533f69d13114910
30 Na0d26f768e1045ea82fb7f20e2bf45c3
31 schema:publisher N541d08d268164a1086c7a04e87d3ef10
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021814384
33 https://doi.org/10.1007/978-3-0346-0180-1_8
34 schema:sdDatePublished 2019-04-16T07:30
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N730bb8e7051a4aefa8d5da22877d6765
37 schema:url https://link.springer.com/10.1007%2F978-3-0346-0180-1_8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N12cae0bff783497bb20a5fe6afe3d44d schema:familyName Behrndt
42 schema:givenName Jussi
43 rdf:type schema:Person
44 N158fdc477a5b4355b071affb1442ac35 schema:familyName Förster
45 schema:givenName Karl-Heinz
46 rdf:type schema:Person
47 N2209ab9870aa418dab2ed6bcccf09a3d rdf:first sg:person.015771172577.94
48 rdf:rest rdf:nil
49 N2508fe915f3f40fbb887ef4aad47c2c3 schema:familyName Trunk
50 schema:givenName Carsten
51 rdf:type schema:Person
52 N3ece6348d8924b3e9558cbdb3b5c1a15 schema:name readcube_id
53 schema:value 67ee58948919961e49fb36603553276a4df5b57d385426a3371dc552360a8cd6
54 rdf:type schema:PropertyValue
55 N541d08d268164a1086c7a04e87d3ef10 schema:location Basel
56 schema:name Birkhäuser Basel
57 rdf:type schema:Organisation
58 N5762662e38024485b533f69d13114910 schema:name doi
59 schema:value 10.1007/978-3-0346-0180-1_8
60 rdf:type schema:PropertyValue
61 N59964008429448dfb8822cb60335dace schema:name Department of theoretical Physics, State Pedagogical University, GSP 37, Str. Ulyanova 1, 603950, Nizhny Novgorod, Russia
62 rdf:type schema:Organization
63 N730bb8e7051a4aefa8d5da22877d6765 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Na01fd7e5e12b49e294478e02bd541131 rdf:first N2508fe915f3f40fbb887ef4aad47c2c3
66 rdf:rest rdf:nil
67 Na0d26f768e1045ea82fb7f20e2bf45c3 schema:name dimensions_id
68 schema:value pub.1021814384
69 rdf:type schema:PropertyValue
70 Naa6071d4d7fb457e926d6c02cb8623c7 rdf:first N158fdc477a5b4355b071affb1442ac35
71 rdf:rest Na01fd7e5e12b49e294478e02bd541131
72 Nc8bd0b2e96b14df69d32fb831723cdf9 rdf:first N12cae0bff783497bb20a5fe6afe3d44d
73 rdf:rest Naa6071d4d7fb457e926d6c02cb8623c7
74 Ndb5ca6c23a5e4a30a7e23047447e131a rdf:first sg:person.013762723211.39
75 rdf:rest Ne39b4543f19c494da3191fe000590357
76 Ne39b4543f19c494da3191fe000590357 rdf:first sg:person.011442625430.95
77 rdf:rest N2209ab9870aa418dab2ed6bcccf09a3d
78 Nf800a9760ff9457690e9ba7280a24663 schema:isbn 978-3-0346-0179-5
79 978-3-0346-0180-1
80 schema:name Recent Advances in Operator Theory in Hilbert and Krein Spaces
81 rdf:type schema:Book
82 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
83 schema:name Mathematical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
86 schema:name Pure Mathematics
87 rdf:type schema:DefinedTerm
88 sg:person.011442625430.95 schema:affiliation https://www.grid.ac/institutes/grid.4514.4
89 schema:familyName Luger
90 schema:givenName Annemarie
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011442625430.95
92 rdf:type schema:Person
93 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
94 schema:familyName Dijksma
95 schema:givenName Aad
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
97 rdf:type schema:Person
98 sg:person.015771172577.94 schema:affiliation N59964008429448dfb8822cb60335dace
99 schema:familyName Shondin
100 schema:givenName Yuri
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015771172577.94
102 rdf:type schema:Person
103 sg:pub.10.1007/3-7643-7516-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028386729
104 https://doi.org/10.1007/3-7643-7516-7_5
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/978-3-0348-7947-7_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021766530
107 https://doi.org/10.1007/978-3-0348-7947-7_5
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/978-3-0348-8403-7_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050955161
110 https://doi.org/10.1007/978-3-0348-8403-7_30
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/978-3-0348-8413-6_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000870627
113 https://doi.org/10.1007/978-3-0348-8413-6_8
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-3-0348-9374-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011488831
116 https://doi.org/10.1007/978-3-0348-9374-9
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-662-12678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011943444
119 https://doi.org/10.1007/978-3-662-12678-3
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-7643-8911-6_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024574044
122 https://doi.org/10.1007/978-3-7643-8911-6_5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf01238863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017336779
125 https://doi.org/10.1007/bf01238863
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/mana.200410689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024171462
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/mana.200510410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045685015
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1006/jdeq.1999.3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002159253
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0022-1236(78)90094-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005295899
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0022-1236(03)00068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017222504
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0305-4470/38/22/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059079223
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.4514.4 schema:alternateName Lund University
140 schema:name Department of Mathematics, Lund Institute of Technology, Box 118, SE-221 00, Lund, Sweden
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
143 schema:name Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...