Quadratic (Weakly) Hyperbolic Matrix Polynomials: Direct and Inverse Spectral Problems View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

T. Ya. Azizov , A. Dijksma , K.-H. Förster , P. Jonas

ABSTRACT

Let L be a monic quadratic weakly hyperbolic or hyperbolic n × n matrix polynomial. We solve some direct spectral problems: We prove that the eigenvalues of a compression of L to an (n − 1)-dimensional subspace of ℂn block-interlace and that the eigenvalues of a one-dimensional perturbation of L (−,+)-interlace the eigenvalues of L. We also solve an inverse spectral problem: We identify two given block-interlacing sets of real numbers as the sets of eigenvalues of L and its compression. More... »

PAGES

11-40

Book

TITLE

Recent Advances in Operator Theory in Hilbert and Krein Spaces

ISBN

978-3-0346-0179-5
978-3-0346-0180-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2

DOI

http://dx.doi.org/10.1007/978-3-0346-0180-1_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005419700


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Voronezh State University", 
          "id": "https://www.grid.ac/institutes/grid.20567.36", 
          "name": [
            "Department of Mathematics, State University of Voronezh, Universitetskaya pl. 1, 394006, Voronezh, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azizov", 
        "givenName": "T. Ya.", 
        "id": "sg:person.012640546265.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Groningen", 
          "id": "https://www.grid.ac/institutes/grid.4830.f", 
          "name": [
            "Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dijksma", 
        "givenName": "A.", 
        "id": "sg:person.013762723211.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Department of Mathematics, Technical University Berlin, Strasse des 17. Juni 136, D-10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "F\u00f6rster", 
        "givenName": "K.-H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Berlin", 
          "id": "https://www.grid.ac/institutes/grid.6734.6", 
          "name": [
            "Department of Mathematics, Technical University Berlin, Strasse des 17. Juni 136, D-10623, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jonas", 
        "givenName": "P.", 
        "id": "sg:person.010462431715.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462431715.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmaa.2004.10.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010323962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011943444", 
          "https://doi.org/10.1007/978-3-662-12678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-12678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011943444", 
          "https://doi.org/10.1007/978-3-662-12678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-002-1209-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012093842", 
          "https://doi.org/10.1007/s00020-002-1209-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65755-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016038932", 
          "https://doi.org/10.1007/978-3-642-65755-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-65755-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016038932", 
          "https://doi.org/10.1007/978-3-642-65755-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00020-008-1650-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019336754", 
          "https://doi.org/10.1007/s00020-008-1650-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4120-1_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022300902", 
          "https://doi.org/10.1007/978-1-4612-4120-1_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-1178-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022667168", 
          "https://doi.org/10.1007/978-94-015-1178-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-1178-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022667168", 
          "https://doi.org/10.1007/978-94-015-1178-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02788147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029056838", 
          "https://doi.org/10.1007/bf02788147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02788147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029056838", 
          "https://doi.org/10.1007/bf02788147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(85)90072-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030146215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01682844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033830266", 
          "https://doi.org/10.1007/bf01682844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01682844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033830266", 
          "https://doi.org/10.1007/bf01682844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(93)00126-k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047282544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(74)90077-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049840538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/05064134x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062846580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139994267006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062875192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036144596303984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.1955.4.54007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067510141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198566649.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098773671"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "Let L be a monic quadratic weakly hyperbolic or hyperbolic n \u00d7 n matrix polynomial. We solve some direct spectral problems: We prove that the eigenvalues of a compression of L to an (n \u2212 1)-dimensional subspace of \u2102n block-interlace and that the eigenvalues of a one-dimensional perturbation of L (\u2212,+)-interlace the eigenvalues of L. We also solve an inverse spectral problem: We identify two given block-interlacing sets of real numbers as the sets of eigenvalues of L and its compression.", 
    "editor": [
      {
        "familyName": "Behrndt", 
        "givenName": "Jussi", 
        "type": "Person"
      }, 
      {
        "familyName": "F\u00f6rster", 
        "givenName": "Karl-Heinz", 
        "type": "Person"
      }, 
      {
        "familyName": "Trunk", 
        "givenName": "Carsten", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0346-0180-1_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0346-0179-5", 
        "978-3-0346-0180-1"
      ], 
      "name": "Recent Advances in Operator Theory in Hilbert and Krein Spaces", 
      "type": "Book"
    }, 
    "name": "Quadratic (Weakly) Hyperbolic Matrix Polynomials: Direct and Inverse Spectral Problems", 
    "pagination": "11-40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005419700"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0346-0180-1_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "19d29f7162abb493348bfc05c8b27f1c0c50888995f9443184404bc7cf92f703"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0346-0180-1_2", 
      "https://app.dimensions.ai/details/publication/pub.1005419700"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57871_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0346-0180-1_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      23 PREDICATES      44 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0346-0180-1_2 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6de420766a114580af0799c5d79b9cd3
4 schema:citation sg:pub.10.1007/978-1-4612-4120-1_15
5 sg:pub.10.1007/978-3-642-65755-9
6 sg:pub.10.1007/978-3-662-12678-3
7 sg:pub.10.1007/978-94-015-1178-0
8 sg:pub.10.1007/bf01682844
9 sg:pub.10.1007/bf02788147
10 sg:pub.10.1007/s00020-002-1209-5
11 sg:pub.10.1007/s00020-008-1650-1
12 https://doi.org/10.1016/0024-3795(74)90077-9
13 https://doi.org/10.1016/0024-3795(85)90072-2
14 https://doi.org/10.1016/0024-3795(93)00126-k
15 https://doi.org/10.1016/j.jmaa.2004.10.008
16 https://doi.org/10.1093/acprof:oso/9780198566649.001.0001
17 https://doi.org/10.1137/05064134x
18 https://doi.org/10.1137/s0036139994267006
19 https://doi.org/10.1137/s0036144596303984
20 https://doi.org/10.1512/iumj.1955.4.54007
21 schema:datePublished 2009
22 schema:datePublishedReg 2009-01-01
23 schema:description Let L be a monic quadratic weakly hyperbolic or hyperbolic n × n matrix polynomial. We solve some direct spectral problems: We prove that the eigenvalues of a compression of L to an (n − 1)-dimensional subspace of ℂn block-interlace and that the eigenvalues of a one-dimensional perturbation of L (−,+)-interlace the eigenvalues of L. We also solve an inverse spectral problem: We identify two given block-interlacing sets of real numbers as the sets of eigenvalues of L and its compression.
24 schema:editor Naf984beb0ed84131ba158ffdc433d914
25 schema:genre chapter
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N030f122bd8f749ea9b5c61a83a74811b
29 schema:name Quadratic (Weakly) Hyperbolic Matrix Polynomials: Direct and Inverse Spectral Problems
30 schema:pagination 11-40
31 schema:productId N01032f5dcf4a48d296bc48cd40950667
32 N4aa63ab728fb4c4fac366b9bfe581248
33 Nb41af8147d99483fbe4a1dd921c7371a
34 schema:publisher N1d7a983cc74b410ab1f3081361a3246f
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005419700
36 https://doi.org/10.1007/978-3-0346-0180-1_2
37 schema:sdDatePublished 2019-04-16T07:29
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N8a11a3f0aa9c446394879951517a782e
40 schema:url https://link.springer.com/10.1007%2F978-3-0346-0180-1_2
41 sgo:license sg:explorer/license/
42 sgo:sdDataset chapters
43 rdf:type schema:Chapter
44 N01032f5dcf4a48d296bc48cd40950667 schema:name doi
45 schema:value 10.1007/978-3-0346-0180-1_2
46 rdf:type schema:PropertyValue
47 N030f122bd8f749ea9b5c61a83a74811b schema:isbn 978-3-0346-0179-5
48 978-3-0346-0180-1
49 schema:name Recent Advances in Operator Theory in Hilbert and Krein Spaces
50 rdf:type schema:Book
51 N18dc4c8c71494f888e0404425ad77b9a rdf:first sg:person.013762723211.39
52 rdf:rest N91a47585ca6246799531134702dbaee5
53 N1d7a983cc74b410ab1f3081361a3246f schema:location Basel
54 schema:name Birkhäuser Basel
55 rdf:type schema:Organisation
56 N2027c55dfb9249b9ab16fcd59aad6aa5 schema:familyName Förster
57 schema:givenName Karl-Heinz
58 rdf:type schema:Person
59 N2366ecd2bbc8418bb209ff2d0e6df1ed schema:familyName Behrndt
60 schema:givenName Jussi
61 rdf:type schema:Person
62 N27313115bbad4bfabfe0b845b3aaad05 rdf:first sg:person.010462431715.17
63 rdf:rest rdf:nil
64 N3e71d751ba014e6fbd067cb3a7c065b9 rdf:first N2027c55dfb9249b9ab16fcd59aad6aa5
65 rdf:rest N52d135cc25334b6e8dcd0d7f7b1f5736
66 N4aa63ab728fb4c4fac366b9bfe581248 schema:name readcube_id
67 schema:value 19d29f7162abb493348bfc05c8b27f1c0c50888995f9443184404bc7cf92f703
68 rdf:type schema:PropertyValue
69 N52d135cc25334b6e8dcd0d7f7b1f5736 rdf:first Nd2f5f8292a084eebb357b6a4ff2a3bd5
70 rdf:rest rdf:nil
71 N6de420766a114580af0799c5d79b9cd3 rdf:first sg:person.012640546265.41
72 rdf:rest N18dc4c8c71494f888e0404425ad77b9a
73 N8a11a3f0aa9c446394879951517a782e schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N91a47585ca6246799531134702dbaee5 rdf:first Nb1e5032ae49a42d4b0a7ec6cf906f012
76 rdf:rest N27313115bbad4bfabfe0b845b3aaad05
77 Naf984beb0ed84131ba158ffdc433d914 rdf:first N2366ecd2bbc8418bb209ff2d0e6df1ed
78 rdf:rest N3e71d751ba014e6fbd067cb3a7c065b9
79 Nb1e5032ae49a42d4b0a7ec6cf906f012 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
80 schema:familyName Förster
81 schema:givenName K.-H.
82 rdf:type schema:Person
83 Nb41af8147d99483fbe4a1dd921c7371a schema:name dimensions_id
84 schema:value pub.1005419700
85 rdf:type schema:PropertyValue
86 Nd2f5f8292a084eebb357b6a4ff2a3bd5 schema:familyName Trunk
87 schema:givenName Carsten
88 rdf:type schema:Person
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
93 schema:name Pure Mathematics
94 rdf:type schema:DefinedTerm
95 sg:person.010462431715.17 schema:affiliation https://www.grid.ac/institutes/grid.6734.6
96 schema:familyName Jonas
97 schema:givenName P.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462431715.17
99 rdf:type schema:Person
100 sg:person.012640546265.41 schema:affiliation https://www.grid.ac/institutes/grid.20567.36
101 schema:familyName Azizov
102 schema:givenName T. Ya.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41
104 rdf:type schema:Person
105 sg:person.013762723211.39 schema:affiliation https://www.grid.ac/institutes/grid.4830.f
106 schema:familyName Dijksma
107 schema:givenName A.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39
109 rdf:type schema:Person
110 sg:pub.10.1007/978-1-4612-4120-1_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022300902
111 https://doi.org/10.1007/978-1-4612-4120-1_15
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/978-3-642-65755-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016038932
114 https://doi.org/10.1007/978-3-642-65755-9
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/978-3-662-12678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011943444
117 https://doi.org/10.1007/978-3-662-12678-3
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/978-94-015-1178-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022667168
120 https://doi.org/10.1007/978-94-015-1178-0
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf01682844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033830266
123 https://doi.org/10.1007/bf01682844
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02788147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029056838
126 https://doi.org/10.1007/bf02788147
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/s00020-002-1209-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012093842
129 https://doi.org/10.1007/s00020-002-1209-5
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/s00020-008-1650-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019336754
132 https://doi.org/10.1007/s00020-008-1650-1
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0024-3795(74)90077-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049840538
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/0024-3795(85)90072-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030146215
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/0024-3795(93)00126-k schema:sameAs https://app.dimensions.ai/details/publication/pub.1047282544
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.jmaa.2004.10.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010323962
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/acprof:oso/9780198566649.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098773671
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1137/05064134x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062846580
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1137/s0036139994267006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062875192
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1137/s0036144596303984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877919
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1512/iumj.1955.4.54007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067510141
151 rdf:type schema:CreativeWork
152 https://www.grid.ac/institutes/grid.20567.36 schema:alternateName Voronezh State University
153 schema:name Department of Mathematics, State University of Voronezh, Universitetskaya pl. 1, 394006, Voronezh, Russia
154 rdf:type schema:Organization
155 https://www.grid.ac/institutes/grid.4830.f schema:alternateName University of Groningen
156 schema:name Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.6734.6 schema:alternateName Technical University of Berlin
159 schema:name Department of Mathematics, Technical University Berlin, Strasse des 17. Juni 136, D-10623, Berlin, Germany
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...