Ontology type: schema:Chapter
2009
AUTHORST. Ya. Azizov , A. Dijksma , K.-H. Förster , P. Jonas
ABSTRACTLet L be a monic quadratic weakly hyperbolic or hyperbolic n × n matrix polynomial. We solve some direct spectral problems: We prove that the eigenvalues of a compression of L to an (n − 1)-dimensional subspace of ℂn block-interlace and that the eigenvalues of a one-dimensional perturbation of L (−,+)-interlace the eigenvalues of L. We also solve an inverse spectral problem: We identify two given block-interlacing sets of real numbers as the sets of eigenvalues of L and its compression. More... »
PAGES11-40
Recent Advances in Operator Theory in Hilbert and Krein Spaces
ISBN
978-3-0346-0179-5
978-3-0346-0180-1
http://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2
DOIhttp://dx.doi.org/10.1007/978-3-0346-0180-1_2
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1005419700
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Voronezh State University",
"id": "https://www.grid.ac/institutes/grid.20567.36",
"name": [
"Department of Mathematics, State University of Voronezh, Universitetskaya pl. 1, 394006, Voronezh, Russia"
],
"type": "Organization"
},
"familyName": "Azizov",
"givenName": "T. Ya.",
"id": "sg:person.012640546265.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640546265.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Groningen",
"id": "https://www.grid.ac/institutes/grid.4830.f",
"name": [
"Department of Mathematics, University of Groningen, P.O. Box 407, 9700 AK, Groningen, The Netherlands"
],
"type": "Organization"
},
"familyName": "Dijksma",
"givenName": "A.",
"id": "sg:person.013762723211.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013762723211.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technical University of Berlin",
"id": "https://www.grid.ac/institutes/grid.6734.6",
"name": [
"Department of Mathematics, Technical University Berlin, Strasse des 17. Juni 136, D-10623, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "F\u00f6rster",
"givenName": "K.-H.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technical University of Berlin",
"id": "https://www.grid.ac/institutes/grid.6734.6",
"name": [
"Department of Mathematics, Technical University Berlin, Strasse des 17. Juni 136, D-10623, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "Jonas",
"givenName": "P.",
"id": "sg:person.010462431715.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462431715.17"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/j.jmaa.2004.10.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010323962"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-12678-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011943444",
"https://doi.org/10.1007/978-3-662-12678-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-12678-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011943444",
"https://doi.org/10.1007/978-3-662-12678-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-002-1209-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012093842",
"https://doi.org/10.1007/s00020-002-1209-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-65755-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016038932",
"https://doi.org/10.1007/978-3-642-65755-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-65755-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016038932",
"https://doi.org/10.1007/978-3-642-65755-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00020-008-1650-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019336754",
"https://doi.org/10.1007/s00020-008-1650-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4612-4120-1_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022300902",
"https://doi.org/10.1007/978-1-4612-4120-1_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-1178-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022667168",
"https://doi.org/10.1007/978-94-015-1178-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-015-1178-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022667168",
"https://doi.org/10.1007/978-94-015-1178-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02788147",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029056838",
"https://doi.org/10.1007/bf02788147"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02788147",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029056838",
"https://doi.org/10.1007/bf02788147"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0024-3795(85)90072-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030146215"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01682844",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033830266",
"https://doi.org/10.1007/bf01682844"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01682844",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033830266",
"https://doi.org/10.1007/bf01682844"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0024-3795(93)00126-k",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047282544"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0024-3795(74)90077-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049840538"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/05064134x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062846580"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0036139994267006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062875192"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1137/s0036144596303984",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062877919"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1512/iumj.1955.4.54007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1067510141"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/acprof:oso/9780198566649.001.0001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1098773671"
],
"type": "CreativeWork"
}
],
"datePublished": "2009",
"datePublishedReg": "2009-01-01",
"description": "Let L be a monic quadratic weakly hyperbolic or hyperbolic n \u00d7 n matrix polynomial. We solve some direct spectral problems: We prove that the eigenvalues of a compression of L to an (n \u2212 1)-dimensional subspace of \u2102n block-interlace and that the eigenvalues of a one-dimensional perturbation of L (\u2212,+)-interlace the eigenvalues of L. We also solve an inverse spectral problem: We identify two given block-interlacing sets of real numbers as the sets of eigenvalues of L and its compression.",
"editor": [
{
"familyName": "Behrndt",
"givenName": "Jussi",
"type": "Person"
},
{
"familyName": "F\u00f6rster",
"givenName": "Karl-Heinz",
"type": "Person"
},
{
"familyName": "Trunk",
"givenName": "Carsten",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/978-3-0346-0180-1_2",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-0346-0179-5",
"978-3-0346-0180-1"
],
"name": "Recent Advances in Operator Theory in Hilbert and Krein Spaces",
"type": "Book"
},
"name": "Quadratic (Weakly) Hyperbolic Matrix Polynomials: Direct and Inverse Spectral Problems",
"pagination": "11-40",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1005419700"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/978-3-0346-0180-1_2"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"19d29f7162abb493348bfc05c8b27f1c0c50888995f9443184404bc7cf92f703"
]
}
],
"publisher": {
"location": "Basel",
"name": "Birkh\u00e4user Basel",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/978-3-0346-0180-1_2",
"https://app.dimensions.ai/details/publication/pub.1005419700"
],
"sdDataset": "chapters",
"sdDatePublished": "2019-04-16T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57871_00000000.jsonl",
"type": "Chapter",
"url": "https://link.springer.com/10.1007%2F978-3-0346-0180-1_2"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0180-1_2'
This table displays all metadata directly associated to this object as RDF triples.
160 TRIPLES
23 PREDICATES
44 URIs
20 LITERALS
8 BLANK NODES