On an Interpolation Problem for Generalized Schur Functions View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2009

AUTHORS

Vladimir Bolotnikov

ABSTRACT

The nondegenerate Nevanlinna-Pick-Carathéodory-Fejér interpolation problem with finitely many interpolation conditions always has infinitely many solutions in a generalized Schur class for every κ≥κmin where the integer κmin equals the number of negative eigenvalues of the Pick matrix associated to the problem and completely determined by interpolation data. A linear fractional description of all solutions of the (nondegenerate) problem is well known. In this paper, we present a similar result for an arbitrary κ≥κmin. More... »

PAGES

83-101

References to SciGraph publications

Book

TITLE

Operator Algebras, Operator Theory and Applications

ISBN

978-3-0346-0173-3
978-3-0346-0174-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-0346-0174-0_3

DOI

http://dx.doi.org/10.1007/978-3-0346-0174-0_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052385467


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of William & Mary", 
          "id": "https://www.grid.ac/institutes/grid.264889.9", 
          "name": [
            "Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolotnikov", 
        "givenName": "Vladimir", 
        "id": "sg:person.01130533744.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00020-003-1220-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003813268", 
          "https://doi.org/10.1007/s00020-003-1220-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0024-3795(95)00700-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004531712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2008.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018560801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mana.19770770116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027367955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-7643-7547-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030149691", 
          "https://doi.org/10.1007/3-7643-7547-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1043632982", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-0348-7709-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043632982", 
          "https://doi.org/10.1007/978-3-0348-7709-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009", 
    "datePublishedReg": "2009-01-01", 
    "description": "The nondegenerate Nevanlinna-Pick-Carath\u00e9odory-Fej\u00e9r interpolation problem with finitely many interpolation conditions always has infinitely many solutions in a generalized Schur class for every \u03ba\u2265\u03bamin where the integer \u03bamin equals the number of negative eigenvalues of the Pick matrix associated to the problem and completely determined by interpolation data. A linear fractional description of all solutions of the (nondegenerate) problem is well known. In this paper, we present a similar result for an arbitrary \u03ba\u2265\u03bamin.", 
    "editor": [
      {
        "familyName": "Grobler", 
        "givenName": "J. J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Labuschagne", 
        "givenName": "L. E.", 
        "type": "Person"
      }, 
      {
        "familyName": "M\u00f6ller", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-0346-0174-0_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-0346-0173-3", 
        "978-3-0346-0174-0"
      ], 
      "name": "Operator Algebras, Operator Theory and Applications", 
      "type": "Book"
    }, 
    "name": "On an Interpolation Problem for Generalized Schur Functions", 
    "pagination": "83-101", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052385467"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-0346-0174-0_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f98798be967f549a96c67785d046d86dd4681a207ab2fef725a9e23132f0b277"
        ]
      }
    ], 
    "publisher": {
      "location": "Basel", 
      "name": "Birkh\u00e4user Basel", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-0346-0174-0_3", 
      "https://app.dimensions.ai/details/publication/pub.1052385467"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T07:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000356_0000000356/records_57894_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F978-3-0346-0174-0_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0174-0_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0174-0_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0174-0_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-0346-0174-0_3'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-0346-0174-0_3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfc75129b1db34c82b6fa5010ead0da65
4 schema:citation sg:pub.10.1007/3-7643-7547-7_3
5 sg:pub.10.1007/978-3-0348-7709-1
6 sg:pub.10.1007/s00020-003-1220-5
7 https://app.dimensions.ai/details/publication/pub.1043632982
8 https://doi.org/10.1002/mana.19770770116
9 https://doi.org/10.1016/0024-3795(95)00700-8
10 https://doi.org/10.1016/j.jmaa.2008.12.011
11 schema:datePublished 2009
12 schema:datePublishedReg 2009-01-01
13 schema:description The nondegenerate Nevanlinna-Pick-Carathéodory-Fejér interpolation problem with finitely many interpolation conditions always has infinitely many solutions in a generalized Schur class for every κ≥κmin where the integer κmin equals the number of negative eigenvalues of the Pick matrix associated to the problem and completely determined by interpolation data. A linear fractional description of all solutions of the (nondegenerate) problem is well known. In this paper, we present a similar result for an arbitrary κ≥κmin.
14 schema:editor Ne1613ff1c6a84750a84494167536737d
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf Nb05a4d1a9385473bab3d7c483ce3c592
19 schema:name On an Interpolation Problem for Generalized Schur Functions
20 schema:pagination 83-101
21 schema:productId N034c45ad5ef849a1829dcbadb382a581
22 N3c6d3e1a22eb4b639b82c70ef8fdde4d
23 N80aa334cdfca40928384691672b6192f
24 schema:publisher N92f77dea0d024e9cb12df7c43e28a160
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052385467
26 https://doi.org/10.1007/978-3-0346-0174-0_3
27 schema:sdDatePublished 2019-04-16T07:31
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N75999590b443429bbd45f869d8556db8
30 schema:url https://link.springer.com/10.1007%2F978-3-0346-0174-0_3
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N034c45ad5ef849a1829dcbadb382a581 schema:name readcube_id
35 schema:value f98798be967f549a96c67785d046d86dd4681a207ab2fef725a9e23132f0b277
36 rdf:type schema:PropertyValue
37 N0a9f610aa7b14807a95b2e1a5b2cb8e9 rdf:first N827291df9aab43eb8f11ae4b1e425a4f
38 rdf:rest N56f1cef274fa455cb8ca0d4b82ab3407
39 N26e567f63bee4b1295ce25db52e8d0f6 schema:familyName Möller
40 schema:givenName M.
41 rdf:type schema:Person
42 N3c6d3e1a22eb4b639b82c70ef8fdde4d schema:name doi
43 schema:value 10.1007/978-3-0346-0174-0_3
44 rdf:type schema:PropertyValue
45 N56f1cef274fa455cb8ca0d4b82ab3407 rdf:first N26e567f63bee4b1295ce25db52e8d0f6
46 rdf:rest rdf:nil
47 N75999590b443429bbd45f869d8556db8 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N80aa334cdfca40928384691672b6192f schema:name dimensions_id
50 schema:value pub.1052385467
51 rdf:type schema:PropertyValue
52 N827291df9aab43eb8f11ae4b1e425a4f schema:familyName Labuschagne
53 schema:givenName L. E.
54 rdf:type schema:Person
55 N92f77dea0d024e9cb12df7c43e28a160 schema:location Basel
56 schema:name Birkhäuser Basel
57 rdf:type schema:Organisation
58 N973bcdcabc534bb892df6401a0c60c0e schema:familyName Grobler
59 schema:givenName J. J.
60 rdf:type schema:Person
61 Nb05a4d1a9385473bab3d7c483ce3c592 schema:isbn 978-3-0346-0173-3
62 978-3-0346-0174-0
63 schema:name Operator Algebras, Operator Theory and Applications
64 rdf:type schema:Book
65 Ne1613ff1c6a84750a84494167536737d rdf:first N973bcdcabc534bb892df6401a0c60c0e
66 rdf:rest N0a9f610aa7b14807a95b2e1a5b2cb8e9
67 Nfc75129b1db34c82b6fa5010ead0da65 rdf:first sg:person.01130533744.43
68 rdf:rest rdf:nil
69 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
70 schema:name Mathematical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
73 schema:name Pure Mathematics
74 rdf:type schema:DefinedTerm
75 sg:person.01130533744.43 schema:affiliation https://www.grid.ac/institutes/grid.264889.9
76 schema:familyName Bolotnikov
77 schema:givenName Vladimir
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130533744.43
79 rdf:type schema:Person
80 sg:pub.10.1007/3-7643-7547-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030149691
81 https://doi.org/10.1007/3-7643-7547-7_3
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/978-3-0348-7709-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043632982
84 https://doi.org/10.1007/978-3-0348-7709-1
85 rdf:type schema:CreativeWork
86 sg:pub.10.1007/s00020-003-1220-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003813268
87 https://doi.org/10.1007/s00020-003-1220-5
88 rdf:type schema:CreativeWork
89 https://app.dimensions.ai/details/publication/pub.1043632982 schema:CreativeWork
90 https://doi.org/10.1002/mana.19770770116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027367955
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0024-3795(95)00700-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004531712
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.jmaa.2008.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018560801
95 rdf:type schema:CreativeWork
96 https://www.grid.ac/institutes/grid.264889.9 schema:alternateName College of William & Mary
97 schema:name Department of Mathematics, The College of William and Mary, 23187-8795, Williamsburg, VA, USA
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...