Inferring COVID-19 Biological Pathways from Clinical Phenotypes Via Topological Analysis View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2022-03-09

AUTHORS

Negin Karisani , Daniel E. Platt , Saugata Basu , Laxmi Parida

ABSTRACT

COVID-19 has caused thousands of deaths around the world and also resulted in a large international economic disruption. Identifying the pathways associated with this illness can help medical researchers to better understand the properties of the condition. This process can be carried out by analyzing the medical records. It is crucial to develop tools and models that can aid researchers with this process in a timely manner. However, medical records are often unstructured clinical notes, and this poses significant challenges to developing the automated systems. In this article, we propose a pipeline to aid practitioners in analyzing clinical notes and revealing the pathways associated with this disease. Our pipeline relies on topological properties and consists of three phases: (1) pre-processing the clinical notes to extract the salient concepts, (2) constructing a feature space of the patients to characterize the extracted concepts, and finally, (3) leveraging the topological properties to distill the available knowledge and visualize the result. Our experiments on a publicly available dataset of COVID-19 clinical notes testify that our pipeline can indeed extract meaningful pathways. More... »

PAGES

147-163

Book

TITLE

AI for Disease Surveillance and Pandemic Intelligence

ISBN

978-3-030-93079-0
978-3-030-93080-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-93080-6_12

DOI

http://dx.doi.org/10.1007/978-3-030-93080-6_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1146122126


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Purdue University, West Lafayette, USA", 
          "id": "http://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "Purdue University, West Lafayette, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karisani", 
        "givenName": "Negin", 
        "id": "sg:person.014147070135.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147070135.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Platt", 
        "givenName": "Daniel E.", 
        "id": "sg:person.01332106363.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332106363.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purdue University, West Lafayette, USA", 
          "id": "http://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "Purdue University, West Lafayette, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basu", 
        "givenName": "Saugata", 
        "id": "sg:person.013033776043.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033776043.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM T.J. Watson Research Center, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.481554.9", 
          "name": [
            "IBM T.J. Watson Research Center, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Parida", 
        "givenName": "Laxmi", 
        "id": "sg:person.01336557015.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2022-03-09", 
    "datePublishedReg": "2022-03-09", 
    "description": "COVID-19 has caused thousands of deaths around the world and also resulted in a large international economic disruption. Identifying the pathways associated with this illness can help medical researchers to better understand the properties of the condition. This process can be carried out by analyzing the medical records. It is crucial to develop tools and models that can aid researchers with this process in a timely manner. However, medical records are often unstructured clinical notes, and this poses significant challenges to developing the automated systems. In this article, we propose a pipeline to aid practitioners in analyzing clinical notes and revealing the pathways associated with this disease. Our pipeline relies on topological properties and consists of three phases: (1) pre-processing the clinical notes to extract the salient concepts, (2) constructing a feature space of the patients to characterize the extracted concepts, and finally, (3) leveraging the topological properties to distill the available knowledge and visualize the result. Our experiments on a publicly available dataset of COVID-19 clinical notes testify that our pipeline can indeed extract meaningful pathways.", 
    "editor": [
      {
        "familyName": "Shaban-Nejad", 
        "givenName": "Arash", 
        "type": "Person"
      }, 
      {
        "familyName": "Michalowski", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "familyName": "Bianco", 
        "givenName": "Simone", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-93080-6_12", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-030-93079-0", 
        "978-3-030-93080-6"
      ], 
      "name": "AI for Disease Surveillance and Pandemic Intelligence", 
      "type": "Book"
    }, 
    "keywords": [
      "clinical notes", 
      "medical records", 
      "thousands of deaths", 
      "unstructured clinical notes", 
      "COVID-19", 
      "pathway", 
      "topological properties", 
      "biological pathways", 
      "illness", 
      "patients", 
      "death", 
      "disease", 
      "medical researchers", 
      "records", 
      "timely manner", 
      "disruption", 
      "available knowledge", 
      "economic disruption", 
      "practitioners", 
      "significant challenge", 
      "manner", 
      "note", 
      "feature space", 
      "topological analysis", 
      "properties", 
      "knowledge", 
      "analysis", 
      "challenges", 
      "salient concepts", 
      "space", 
      "results", 
      "tool", 
      "researchers", 
      "conditions", 
      "article", 
      "meaningful pathways", 
      "process", 
      "model", 
      "concept", 
      "available datasets", 
      "world", 
      "system", 
      "pipeline", 
      "phase", 
      "thousands", 
      "consist", 
      "experiments", 
      "dataset"
    ], 
    "name": "Inferring COVID-19 Biological Pathways from Clinical Phenotypes Via Topological Analysis", 
    "pagination": "147-163", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1146122126"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-93080-6_12"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-93080-6_12", 
      "https://app.dimensions.ai/details/publication/pub.1146122126"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-09-02T16:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/chapter/chapter_416.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-93080-6_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-93080-6_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-93080-6_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-93080-6_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-93080-6_12'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      22 PREDICATES      72 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-93080-6_12 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N52389a29bbfc4ec3bc6b8f908f194012
4 schema:datePublished 2022-03-09
5 schema:datePublishedReg 2022-03-09
6 schema:description COVID-19 has caused thousands of deaths around the world and also resulted in a large international economic disruption. Identifying the pathways associated with this illness can help medical researchers to better understand the properties of the condition. This process can be carried out by analyzing the medical records. It is crucial to develop tools and models that can aid researchers with this process in a timely manner. However, medical records are often unstructured clinical notes, and this poses significant challenges to developing the automated systems. In this article, we propose a pipeline to aid practitioners in analyzing clinical notes and revealing the pathways associated with this disease. Our pipeline relies on topological properties and consists of three phases: (1) pre-processing the clinical notes to extract the salient concepts, (2) constructing a feature space of the patients to characterize the extracted concepts, and finally, (3) leveraging the topological properties to distill the available knowledge and visualize the result. Our experiments on a publicly available dataset of COVID-19 clinical notes testify that our pipeline can indeed extract meaningful pathways.
7 schema:editor Na8c365dac0e846cd805e043ac78a7b95
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N6a2948a791254050ad9a59ef4984ef35
11 schema:keywords COVID-19
12 analysis
13 article
14 available datasets
15 available knowledge
16 biological pathways
17 challenges
18 clinical notes
19 concept
20 conditions
21 consist
22 dataset
23 death
24 disease
25 disruption
26 economic disruption
27 experiments
28 feature space
29 illness
30 knowledge
31 manner
32 meaningful pathways
33 medical records
34 medical researchers
35 model
36 note
37 pathway
38 patients
39 phase
40 pipeline
41 practitioners
42 process
43 properties
44 records
45 researchers
46 results
47 salient concepts
48 significant challenge
49 space
50 system
51 thousands
52 thousands of deaths
53 timely manner
54 tool
55 topological analysis
56 topological properties
57 unstructured clinical notes
58 world
59 schema:name Inferring COVID-19 Biological Pathways from Clinical Phenotypes Via Topological Analysis
60 schema:pagination 147-163
61 schema:productId N30ad5e61247f4900bc2747746058e3a7
62 Nd763ffc28fe541279a5337ab684180a9
63 schema:publisher N078b25a875a6427dbfd787ea32b66f42
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1146122126
65 https://doi.org/10.1007/978-3-030-93080-6_12
66 schema:sdDatePublished 2022-09-02T16:16
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N28a77b42c8004a27b25be0149f31cf4f
69 schema:url https://doi.org/10.1007/978-3-030-93080-6_12
70 sgo:license sg:explorer/license/
71 sgo:sdDataset chapters
72 rdf:type schema:Chapter
73 N051c915163e448f2a2a25fe0f9162301 rdf:first Nf3323102533144379ae25aa3582dbb51
74 rdf:rest N9a8c509bfd5c40b9afffd079569d6964
75 N078b25a875a6427dbfd787ea32b66f42 schema:name Springer Nature
76 rdf:type schema:Organisation
77 N0af45dd2f0de4c07ad4fe23160d64cff schema:familyName Bianco
78 schema:givenName Simone
79 rdf:type schema:Person
80 N28a77b42c8004a27b25be0149f31cf4f schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N2f9122e2956e4daeaa1a17a074be3779 schema:familyName Shaban-Nejad
83 schema:givenName Arash
84 rdf:type schema:Person
85 N30ad5e61247f4900bc2747746058e3a7 schema:name doi
86 schema:value 10.1007/978-3-030-93080-6_12
87 rdf:type schema:PropertyValue
88 N52389a29bbfc4ec3bc6b8f908f194012 rdf:first sg:person.014147070135.09
89 rdf:rest Nc2dfacad29384373beec5a7d569f65fa
90 N6a2948a791254050ad9a59ef4984ef35 schema:isbn 978-3-030-93079-0
91 978-3-030-93080-6
92 schema:name AI for Disease Surveillance and Pandemic Intelligence
93 rdf:type schema:Book
94 N7506ccad78674f749a42cd50173d860a rdf:first sg:person.01336557015.68
95 rdf:rest rdf:nil
96 N9a8c509bfd5c40b9afffd079569d6964 rdf:first N0af45dd2f0de4c07ad4fe23160d64cff
97 rdf:rest rdf:nil
98 Na8c365dac0e846cd805e043ac78a7b95 rdf:first N2f9122e2956e4daeaa1a17a074be3779
99 rdf:rest N051c915163e448f2a2a25fe0f9162301
100 Nb7e1980a1d4b4f1d90526e43216400b1 rdf:first sg:person.013033776043.37
101 rdf:rest N7506ccad78674f749a42cd50173d860a
102 Nc2dfacad29384373beec5a7d569f65fa rdf:first sg:person.01332106363.98
103 rdf:rest Nb7e1980a1d4b4f1d90526e43216400b1
104 Nd763ffc28fe541279a5337ab684180a9 schema:name dimensions_id
105 schema:value pub.1146122126
106 rdf:type schema:PropertyValue
107 Nf3323102533144379ae25aa3582dbb51 schema:familyName Michalowski
108 schema:givenName Martin
109 rdf:type schema:Person
110 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
111 schema:name Medical and Health Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
114 schema:name Neurosciences
115 rdf:type schema:DefinedTerm
116 sg:person.013033776043.37 schema:affiliation grid-institutes:grid.169077.e
117 schema:familyName Basu
118 schema:givenName Saugata
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013033776043.37
120 rdf:type schema:Person
121 sg:person.01332106363.98 schema:affiliation grid-institutes:grid.481554.9
122 schema:familyName Platt
123 schema:givenName Daniel E.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332106363.98
125 rdf:type schema:Person
126 sg:person.01336557015.68 schema:affiliation grid-institutes:grid.481554.9
127 schema:familyName Parida
128 schema:givenName Laxmi
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336557015.68
130 rdf:type schema:Person
131 sg:person.014147070135.09 schema:affiliation grid-institutes:grid.169077.e
132 schema:familyName Karisani
133 schema:givenName Negin
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014147070135.09
135 rdf:type schema:Person
136 grid-institutes:grid.169077.e schema:alternateName Purdue University, West Lafayette, USA
137 schema:name Purdue University, West Lafayette, USA
138 rdf:type schema:Organization
139 grid-institutes:grid.481554.9 schema:alternateName IBM T.J. Watson Research Center, New York, USA
140 schema:name IBM T.J. Watson Research Center, New York, USA
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...