Influence of Tungsten Nanoparticles on the Structure and Mechanical Behavior of AA5056 Under Quasi-static Loading View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2022-02-05

AUTHORS

Nikolai I. Kakhidze , Anton P. Khrustalev , Anastasia A. Akhmadieva , Ilya A. Zhukov , Alexander B. Vorozhtsov

ABSTRACT

The paper investigates the effect of tungstenTungstennanoparticlesNanosized particles on the structureStructureand mechanicalMechanical properties of aluminumAluminum 5056 alloy. Using optical and scanning electron microscopy, the structureStructure of the AA5056-W composite and the initial alloy is investigated. Introduction of 0.5 wt. % of tungstenTungsten nanoparticles does not modify the structureStructure of the aluminumAluminum alloy, but due to dispersed hardening, it can increase the hardness and the values of the yield stress, ultimate tensile strength, and maximum deformations before fracture of the metal matrix. The Orowan mechanism prevails in increasing the machinical properties of aluminumAluminum 5056 alloy with dispersed hardening with tungstenTungstennanoparticlesNanosized particles. The destruction of materials is caused by the uneven distribution of tungstenTungstennanoparticlesNanosized particles in the aluminumAluminum matrix. More... »

PAGES

97-103

Book

TITLE

Light Metals 2022

ISBN

978-3-030-92528-4
978-3-030-92529-1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/978-3-030-92529-1_13

DOI

http://dx.doi.org/10.1007/978-3-030-92529-1_13

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145300351


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kakhidze", 
        "givenName": "Nikolai I.", 
        "id": "sg:person.07734173711.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734173711.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khrustalev", 
        "givenName": "Anton P.", 
        "id": "sg:person.013113265001.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113265001.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akhmadieva", 
        "givenName": "Anastasia A.", 
        "id": "sg:person.011476146222.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011476146222.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhukov", 
        "givenName": "Ilya A.", 
        "id": "sg:person.016402473776.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016402473776.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Tomsk State University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vorozhtsov", 
        "givenName": "Alexander B.", 
        "id": "sg:person.0771536125.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2022-02-05", 
    "datePublishedReg": "2022-02-05", 
    "description": "The paper investigates the effect of tungstenTungstennanoparticlesNanosized particles on the structureStructureand mechanicalMechanical properties of aluminumAluminum 5056 alloy. Using optical and scanning electron microscopy, the structureStructure of the AA5056-W composite and the initial alloy is investigated. Introduction of 0.5 wt. % of tungstenTungsten nanoparticles does not modify the structureStructure of the aluminumAluminum alloy, but due to dispersed hardening, it can increase the hardness and the values of the yield stress, ultimate tensile strength, and maximum deformations before fracture of the metal matrix. The Orowan mechanism prevails in increasing the machinical properties of aluminumAluminum 5056 alloy with dispersed hardening with tungstenTungstennanoparticlesNanosized particles. The destruction of materials is caused by the uneven distribution of tungstenTungstennanoparticlesNanosized particles in the aluminumAluminum matrix.", 
    "editor": [
      {
        "familyName": "Eskin", 
        "givenName": "Dmitry", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/978-3-030-92529-1_13", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-030-92528-4", 
        "978-3-030-92529-1"
      ], 
      "name": "Light Metals 2022", 
      "type": "Book"
    }, 
    "keywords": [
      "ultimate tensile strength", 
      "quasi-static loading", 
      "destruction of materials", 
      "aluminumAluminum alloys", 
      "metal matrix", 
      "Orowan mechanism", 
      "mechanical behavior", 
      "maximum deformation", 
      "initial alloy", 
      "tensile strength", 
      "yield stress", 
      "alloy", 
      "tungsten nanoparticles", 
      "electron microscopy", 
      "particles", 
      "structureStructure", 
      "nanoparticles", 
      "composites", 
      "hardening", 
      "hardness", 
      "properties", 
      "deformation", 
      "matrix", 
      "loading", 
      "uneven distribution", 
      "strength", 
      "wt", 
      "materials", 
      "microscopy", 
      "fractures", 
      "stress", 
      "behavior", 
      "structure", 
      "influence", 
      "distribution", 
      "values", 
      "effect", 
      "mechanism", 
      "introduction", 
      "destruction", 
      "paper"
    ], 
    "name": "Influence of Tungsten Nanoparticles on the Structure and Mechanical Behavior of AA5056 Under Quasi-static Loading", 
    "pagination": "97-103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145300351"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/978-3-030-92529-1_13"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/978-3-030-92529-1_13", 
      "https://app.dimensions.ai/details/publication/pub.1145300351"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-08-04T17:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/chapter/chapter_172.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/978-3-030-92529-1_13"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92529-1_13'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92529-1_13'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92529-1_13'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/978-3-030-92529-1_13'


 

This table displays all metadata directly associated to this object as RDF triples.

128 TRIPLES      22 PREDICATES      65 URIs      58 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/978-3-030-92529-1_13 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N63488ad49b03481eac798bf869c0949f
4 schema:datePublished 2022-02-05
5 schema:datePublishedReg 2022-02-05
6 schema:description The paper investigates the effect of tungstenTungstennanoparticlesNanosized particles on the structureStructureand mechanicalMechanical properties of aluminumAluminum 5056 alloy. Using optical and scanning electron microscopy, the structureStructure of the AA5056-W composite and the initial alloy is investigated. Introduction of 0.5 wt. % of tungstenTungsten nanoparticles does not modify the structureStructure of the aluminumAluminum alloy, but due to dispersed hardening, it can increase the hardness and the values of the yield stress, ultimate tensile strength, and maximum deformations before fracture of the metal matrix. The Orowan mechanism prevails in increasing the machinical properties of aluminumAluminum 5056 alloy with dispersed hardening with tungstenTungstennanoparticlesNanosized particles. The destruction of materials is caused by the uneven distribution of tungstenTungstennanoparticlesNanosized particles in the aluminumAluminum matrix.
7 schema:editor N7274be1c079f44d9b19f32953aae40d1
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Naa0f3cfe9e1e473b8fbbc081015152ef
11 schema:keywords Orowan mechanism
12 alloy
13 aluminumAluminum alloys
14 behavior
15 composites
16 deformation
17 destruction
18 destruction of materials
19 distribution
20 effect
21 electron microscopy
22 fractures
23 hardening
24 hardness
25 influence
26 initial alloy
27 introduction
28 loading
29 materials
30 matrix
31 maximum deformation
32 mechanical behavior
33 mechanism
34 metal matrix
35 microscopy
36 nanoparticles
37 paper
38 particles
39 properties
40 quasi-static loading
41 strength
42 stress
43 structure
44 structureStructure
45 tensile strength
46 tungsten nanoparticles
47 ultimate tensile strength
48 uneven distribution
49 values
50 wt
51 yield stress
52 schema:name Influence of Tungsten Nanoparticles on the Structure and Mechanical Behavior of AA5056 Under Quasi-static Loading
53 schema:pagination 97-103
54 schema:productId N812fde9beb70446f8fd04363e23f1e64
55 Naee59425dfcd4e0b99e9a288dd34780c
56 schema:publisher N4491e691ceed48e29b976a5561c2fa95
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145300351
58 https://doi.org/10.1007/978-3-030-92529-1_13
59 schema:sdDatePublished 2022-08-04T17:15
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N57efaec50acf4421bde690544ddc3cf1
62 schema:url https://doi.org/10.1007/978-3-030-92529-1_13
63 sgo:license sg:explorer/license/
64 sgo:sdDataset chapters
65 rdf:type schema:Chapter
66 N4491e691ceed48e29b976a5561c2fa95 schema:name Springer Nature
67 rdf:type schema:Organisation
68 N57efaec50acf4421bde690544ddc3cf1 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N57f614652e064aa9bc055c9a12f261d8 rdf:first sg:person.013113265001.90
71 rdf:rest Ncc9dadd3133841d5b8ee87520a38657e
72 N63488ad49b03481eac798bf869c0949f rdf:first sg:person.07734173711.91
73 rdf:rest N57f614652e064aa9bc055c9a12f261d8
74 N712509667d2d4af78103b22bbab51ada rdf:first sg:person.0771536125.70
75 rdf:rest rdf:nil
76 N7274be1c079f44d9b19f32953aae40d1 rdf:first N91fc86bf9def4925924501b7e7ba2d95
77 rdf:rest rdf:nil
78 N812fde9beb70446f8fd04363e23f1e64 schema:name dimensions_id
79 schema:value pub.1145300351
80 rdf:type schema:PropertyValue
81 N91fc86bf9def4925924501b7e7ba2d95 schema:familyName Eskin
82 schema:givenName Dmitry
83 rdf:type schema:Person
84 N991fd7e9938c4119b6a2de8dc143a5c1 rdf:first sg:person.016402473776.16
85 rdf:rest N712509667d2d4af78103b22bbab51ada
86 Naa0f3cfe9e1e473b8fbbc081015152ef schema:isbn 978-3-030-92528-4
87 978-3-030-92529-1
88 schema:name Light Metals 2022
89 rdf:type schema:Book
90 Naee59425dfcd4e0b99e9a288dd34780c schema:name doi
91 schema:value 10.1007/978-3-030-92529-1_13
92 rdf:type schema:PropertyValue
93 Ncc9dadd3133841d5b8ee87520a38657e rdf:first sg:person.011476146222.86
94 rdf:rest N991fd7e9938c4119b6a2de8dc143a5c1
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 sg:person.011476146222.86 schema:affiliation grid-institutes:grid.77602.34
102 schema:familyName Akhmadieva
103 schema:givenName Anastasia A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011476146222.86
105 rdf:type schema:Person
106 sg:person.013113265001.90 schema:affiliation grid-institutes:grid.77602.34
107 schema:familyName Khrustalev
108 schema:givenName Anton P.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013113265001.90
110 rdf:type schema:Person
111 sg:person.016402473776.16 schema:affiliation grid-institutes:grid.77602.34
112 schema:familyName Zhukov
113 schema:givenName Ilya A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016402473776.16
115 rdf:type schema:Person
116 sg:person.0771536125.70 schema:affiliation grid-institutes:grid.77602.34
117 schema:familyName Vorozhtsov
118 schema:givenName Alexander B.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771536125.70
120 rdf:type schema:Person
121 sg:person.07734173711.91 schema:affiliation grid-institutes:grid.77602.34
122 schema:familyName Kakhidze
123 schema:givenName Nikolai I.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07734173711.91
125 rdf:type schema:Person
126 grid-institutes:grid.77602.34 schema:alternateName Tomsk State University, Tomsk, Russia
127 schema:name Tomsk State University, Tomsk, Russia
128 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...